Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(570.72KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Dynamic Threshold in Clip Analysis and Retrieval
Satishkumar L Varma, Sanjay N Talbar
Pages - 417 - 424     |    Revised - 01-09-2011     |    Published - 05-10-2011
Volume - 5   Issue - 4    |    Publication Date - September / October 2011  Table of Contents
MORE INFORMATION
KEYWORDS
Video Clip, Key Frames Extraction, Entropy, Indexing, Retrieval
ABSTRACT
Key frame extraction can be helpful in video summarization, analysis, indexing, browsing, and retrieval. Clip analysis of key frame sequences is an open research issues. The paper deals with identification and extraction of key frames using dynamic threshold followed by video retrieval. The number of key frames to be extracted for each shot depends on the activity details of the shot. This system uses the statistics of comparison between the successive frames within a level extracted on the basis of color histograms and dynamic threshold. Two program interfaces are linked for clip analysis and video indexing and retrieval using entropy. The results using proposed system on few video sequences are tested and the extracted key frames and retrieved results are shown.
CITED BY (3)  
1 Packialatha, A., & Chandra Sekar, A. (2014). Adept identification of similar videos for web-based video search.
2 Avrithis, Y. (2013). Publication & Citation List.
3 Lavanya, S., Ramakrishnan, S., & Vaithiyanathan, V. (2012). A Novel Compression for Enormous Motion Data in Video Using Repeated Object Clips [ROC].
1 Google Scholar 
2 CiteSeerX 
3 Scribd 
4 SlideShare 
5 PdfSR 
1 F. Idris and S. Panchanathan. “Review of Image and Video Indexing Techniques,” Journal of Visual Communication and Image Representation. 8(2). 146-166. 1997.
2 N. Dimitrova, T. McGee and H. Elenbaas. “Philips Research,” 345 Scarborough Rd. Briarclii Manor NY, 10510.
3 J. Oh, A. Kien and Hua. “An Efficient Technique for Summarizing Videos Using Visual Contents,” Multimedia and Expo, ICME 2000. IEEE International Conference, Vol. 2, pg 1167 – 1170, Jul 2000.
4 Y. Gong and X. Liu. “Generating Optimal Video Summaries,” Multimedia and Expo, ICME 2000, IEEE International Conference, Vol. 3, pg 1559 – 1562, Jul 2000.
5 D. DeMenthon, V. Kobla and D. Doermann. “Video Summarization by Curve Simplification,” Technical Report LAMP-TR-018, CS-TR-3916, University of Maryland, College Park, 1998.
6 R. Leinhart, S. Pfeiffer and W. Effelsberg. “Video Abstracting,” Communications of the ACM, Vol. 40, No. 12, Dec 1997.
7 A. Girgensohn and J. Boreczky. “Time-Constrained Keyframe Selection Technique,” in IEEE Multimedia Systems “99, IEEE Computer Society, vol. 1, pp. 756-761, 1999.
8 N. Gamaz, X. Huang, and S. Panchanathan. “Scene Change Detection in MPEG Domain,” Image Analysis and Interpretation, IEEE Southwest Symposium, pg. 12-17, 1998.
9 D. M. Ali and M. Ghanbari. “Clear Scene Cut Detection Directly from MPEG Bit Streams,” IEEE IP and its Applications, No.465, Vol. 1, pg. 285-289, Jul 1999.
10 J. Nang, S. Hong and Y. Ihm. “An Efficient Video Segmentation Scheme for MPEG Video Stream using Macroblock Information,” 7th ACM international conference on Multimedia, pg 23 – 26, Oct 1999.
11 B. L. Yeo and B. Liu. “Rapid scene analysis on compressed videos,” IEEE Trans. Circuits Systems Video Technol. 5, 1995, 533–544.
12 N. Doulamis, A. Doulamis, Y. Avrithis and S. Kollias. “Video content representation using optimal extraction of frames and scenes,” in Proc. of IEEE Int. Conference on Image Processing (ICIP), Chicago USA, Oct. 1998.
13 F. Chen, M. Cooper and J. Adcock. “Video summarization preserving dynamic content,” proceeding of the TRECVID video summarization, pages 40-44. Germany 2007.
14 P. Over, A. F. Smeaton and P. Kelly. “The TRECVID 2007 BBC rushes summarization evaluation pilot,” In Proceedings of the TRECVID Workshop on Video Summarization (TVS”07), pages 1-15, New York, NY, September 2007, ACM Press.
15 X. F. Yang, Q. Tian and P. Xue. “Short Video Repeat Identification With Application to News Video Structure Analysis,” IEEE Transaction on Multimedia, 9(3)(2007), pp. 600-609.
16 N. M. Loccoz, E. Bruno, and S. M. Maillet. “Interactive Retrieval of Video Sequences from Local Feature Dynamics, Lecture Notes in Computer Science, 3877(2006), pp. 128-140.
17 H. Lu, B. C. Ooi, H. T. Shen, and X. Xue. “Hierarchical Indexing Structure for E.cient Similarity Search in Video Retrieval,” IEEE Transaction on Knowledge and Data Engineering, 18(11), 2006, pp. 1544-1559.
18 J. Shao, Z. Huang, H. T. Shen, X. Zhou, E. P. Lim and Y. Li. “Batch Nearest Neighbor Search for Video Retrieval,” IEEE Transaction on Multimedia, 10(3)(2008), pp. 409-420.
19 C. G. M. Snoek, B. Huurnink, L. Hollink, M. D. Rijke, G. Schreiber and M.Worring. “Adding Semantics to Detectors for Video Retrieval,” IEEE Transaction on Multimedia, 9(5)(2007), pp. 975-986.
20 T. T. Sato, T. Kanade, E. K Hughes and M. A. Smith. “Video OCR for digital news archive,” Proceedings of IEEE International Workshop on Content-Based Access of Image and Video Databases, Jan. 3rd, pp. 52-60, 1998.
21 S. H. Han, K. Yoon and I. S. Kweon. “A new technique for shot detection and key frames selection in histogram space,” 12th Workshop on Image Processing and Image Understanding, pp. 475-479, 2000.
22 S. L. Varma and S. N. Talbar. “iMATCH Image Matching and Retrieval for Digital Image Libraries,” ICETET10, pp. 196-201, December 2009.
23 S. L. Varma and S. N. Talbar. “IRMoment Image Indexing and Retrieval by Combining Moments,” IET Digest, Volume 2009, Issue 1, pp. 38, 2009.
24 W. Niblack, R. Berber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic and P. Yanker. “The QBIC project. querying images by content using color, texture and shape,” SPIE Storage and Retrieval for Image and Video Database II, pp. 173-187, 1993.
25 J. Dowe. “Content-based retrieval in multimedia imaging,” in SPIE Storage and Retrieval for Image and Video Databases II, pp.164-167, 1993.
26 J. R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain and C. F. Shu. “The Virage image search engine. an open framework for image management,” in SPIE Storage and Retrieval for Image and Video Databases V, pp 76-87, 1996.
27 J. R. Smith and S. F. Chang. “An image and video search engine for the World-Wide Web,” in Proc. of SPIE, vol. 3022, pp 85-95, 1997.
28 C. Carson, S. Belongie, H. Greenspan and J. Malik. “Region-based image querying,” IEEE CVPR”97 Workshop on Content-Based Access of Image and Video Libraries, pp. 42-49, 1997.
29 T. P. Minka and R. W. Picard. “Interactive learning with a society of models,” in Pattern Recognition, 30(4), pp. 565-581, Apr. 1997.
30 Y. Rui, T. Huang and S. Mehrotra. “Content-based image retrieval with relevance feedback in MARS,” IEEE International Conference on Image Processing, pp. 815-818, Oct. 1997.
31 S. F. Chang, W. Chen, H. J. Meng, H. Sundaram and D. Zhong. “A fully automated contentbased video search engine supporting spatiotemporal queries,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 5, pp. 602–615, Sep. 1998.
32 Z. Yang, X. Wan and C. C. J. Kuo. “Interactive image retrieval. concept, procedure and tools,” in IEEE 32nd Asilomar Conference, Montery, CA, pp. 261–265, Nov. 1998.
33 R. Zabih, J. Miller and K. Mai. “A feature based algorithm for detecting and classifying scene breaks,” Proceedings of the 3rd ACM International Conference on Multimedia, pp. 189-200, 1995.
Mr. Satishkumar L Varma
Pillai's Instititute of Information Technology - India
varmasl@yahoo.co.in
Professor Sanjay N Talbar
SGGS IE&T - India