Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(1.28MB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Active Shape Model based On A Spatio-Temporal A Priori Knowledge: Applied To Left Ventricle Tracking In Scintigraphic Sequences
Said Ettaieb, Kamel Hamrouni, Su Ruan
Pages - 422 - 440     |    Revised - 15-11-2012     |    Published - 31-12-2012
Volume - 6   Issue - 6    |    Publication Date - December 2012  Table of Contents
MORE INFORMATION
KEYWORDS
Active Shape Model, A Priori Knowledge, spatio-temporal Shape Variation, Scintigraphic Sequences
ABSTRACT
The Active Shape Model – ASM is a class of deformable models that relies on a statistical a priori knowledge of shape for the segmentation of structures of interest [5]. The main contribution of this work is to integrate a new a priori knowledge about the spatio-temporal shape variation in this model. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. The proposed method is based on two types of a priori knowledge: spatial and temporal variation of the shape of the studied structure. It was applied first on synthetic sequences then on scintigraphic sequences for tracking the left ventricle of the heart. The results were encouraging.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 M. Kass, A. Witikin and D. Terzopoulos. “Snakes: Active contour models”. International Journal of Computer vision, pp. 321 – 331, 1988.
2 L. D. Cohen. “Active contour models and balloons”. CVGIP: Image Understanding, vol.53, pp.211– 218, 1991.
3 S. Osher and J. A. Sethian. “Fronts propagating with Curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations”. J. Comput. Phys., vol.79, pp 12–49, 1988.
4 V. Caselles, R. Kimmel and G. Sapiro. “Geodesic Active Contours”. International Journal of Computer Vision, vol.22, pp 61–79, 1997.
5 T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham. “Active Shape Models - Their Training and Application”. Computer Vision and Image Understanding, vol.61, pp 38–59,1995.
6 T. F. Cootes, G. J. Edwards and C. J. Taylor. “Active Appearance Models”. IEEE Trans.Pattern Anal. Mach. Intell, vol.23, pp 681–685, 2001.
7 A. Singh, D. Goldgof and D. Terzopoulos. “Deformable Models in Medical Image Analysis”.IEEE Computer Society, Silver Spring, MD, 1998.
8 A. Fekir, N. Benamrane and A. Taleb-Ahmed. "Détection et Suivi d'Objets dans une Séquence d'Images par Contours Actifs". In Proc. CIIA, 2009.
9 F. Leymarie and M. Levine. “Tracking deformable objects in the plane using an active contour model”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp 617 –634, 1993.
10 T. McInerney and D. Terzopoulos. “A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis”. Computerized Medical Imaging and Graphics, Vol.19, pp 69 – 83, 1995.
11 W. Niessen, J. Duncan, M. Viergever and B. Romeny. “Spatio-temporal Analysis of Left Ventricular Motion”. SPIE Medical Imaging, SPIE Press, pp 250 – 261, 1995.
12 S. Sclaroff, and J. Isidoro. “Active blobs”. Proceedings of the Sixth IEEE International Conference on Computer Vision, pp 1146 – 1153, 1998.
13 G. Hamarneh and G. Tomas. “Deformable spatio- temporal shape models: extending active shape models to 2D+time”. Journal of Image Vision Computing, vol. 22, pp 461-470, 2004.
14 B. Lelieveldt, S. Mitchell, J. Bosch, R. van der Geest, M. Sonka, J. Reiber. “Time-continuous segmentation of cardiac image sequences using active appearance motion models”.Proceedings of the Information Processing in Medical Imaging, pp 446 – 452, 2001.
15 A. Signh, L. Von Kurowski and M. Chiu. “Cardiac MR image segmentation using deformable models”. SPIE Proceedings of the Biomedical Image Processing and Biomedical Visualization, pp 8 – 28, 1993.
16 G. Hamarneh. “Active Shape Models, Modeling Shape Variations and Gray Level Information and an Application to Image Search and Classification”. Technical report, Department of Signals and Systems, School of Electrical and Computer Engineering, Chalmers University of Technology, Goteborg, Sweden, 1998.
17 G. Strang. “Linear Algebra and Its Applications”. Saunders 1988.
18 J. Pladellorenst, J. Serraa, A. Castell and M. Yzuelll. “Using mathematical morphology to determine left ventricular contours”. Phys. Med. Biol., vol. 37, pp 3877-1894, 1992.
19 W. Gao and Y. Jin. “Auto threshold region-growing method for edge detection of nuclear medicine images”. Proceedings of SPIE, Medical Image Acquisition and Processing, pp. 126-130, 2001.
20 Damien, L. Itti, P. Egroizard and R. Itti. “Left ventricle detection in radionuclide ventriculograpy by a model of neural network”. Proc. 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: IEEE-EMBS, pp 994-995, Paris,France, 1992.
21 N. Khlifa, N. Hraiech and K. Hamrouni. “Segmentation d’images par l’algorithme EM et les ondelettes. Premier Congrès International de Signaux, Circuits & systèmes : SCS’2004, pp 208-211, Monastir, Tunisie, 2004.
22 K. Hamrouni and N. Khlifa. “Two Methods for Analysis of Dynamic Scintigraphic Images of the Heart”. The International Arab Journal of Information Technology, vol. 3, pp 118-125.2006.
23 A. Jouan, J. Verdenet and J. Cardot. “Extraction and analysis of left ventricular contours in cardiac radionuclide angiographies”. Journal of Optics, pp 239-246, 1991.
24 L. Sajn, M. Kukar, I. Kononenko and M. Milcinski. “Automatic segmentation of whole-body bone scintigrams as a preprocessing step for computer assisted diagnostics”. In lecture Notes in Computer Science, vol. 3581, pp 363-372, 2005.
25 N. Khlifa, T. Kraiem and K. Hamrouni. “Traitement et Analyse d’une Séquence d’Images Scintigraphiques du Cœur ”. La 2ème Conférence Internationale : JTEA’2002, pp 236-244,Sousse, Tunisie, 2002.
26 N. Khlifa, K. Hamrouni and T. Kraiem. “Etude de l’activité cardiaque par analyse d’images”.International Conference on Image and Signal Processing: ICISP’2003, pp 324-232, Agadir,Maroc, 2003.
27 N. Khlifa, A. Malek and K. Hamrouni. “Segmentation d’images par contours actifs :Application à la détection du ventricule gauche dans les images de scintigraphie cardiaque”.International Conference Sciences of Electronic, Technologies of Information and Telecommunication: SETIT’2005, pp 44, Sousse, Tunisie, 2005
28 H. Najah, W. Daniel, K. Hamrouni. “An Active Contour Model Based on Splines and Separating Forces to Detect the Left Ventricle in Scintigraphic Images”. In 2nd International Conference on Machine Intelligence, Tozeur, Tunisie, 2005.
29 N. Khlifa, S. Ettaieb, Y. Wahabi and K. Hamrouni. “Left Ventricle Tracking in Isotopic Ventriculography Using Statistical Deformable Model”. The International Arab Journal of Information Technology, Vol. 7, pp 213–222, 2010.
30 D. Huttenlocher, D. Klanderman and A. Rucklige. “Comparing images using the Hausdorff distance”. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp 850-863, 1993.
Dr. Said Ettaieb
- Tunisia
settaieb@gmail.com
Dr. Kamel Hamrouni
- Tunisia
Dr. Su Ruan
- France