Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(1.68MB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Qualitative and Quantitative Evaluation of Two New Histogram Limiting Binarization Algorithms
Jan Brocher
Pages - 30 - 48     |    Revised - 24-02-2014     |    Published - 19-03-2014
Volume - 8   Issue - 2    |    Publication Date - March 2014  Table of Contents
MORE INFORMATION
KEYWORDS
Automatic Segmentation, Intensity Thresholds, Binarization Quality Assessment, Quantitative Segmentation Evaluation, ImageJ.
ABSTRACT
Image segmentation and thus feature extraction by binarization is a crucial aspect during image processing. The "most" critical criteria to improve further analysis on binary images is a least- biased comparison of different algorithms to identify the one performing best. Therefore, fast and easy-to-use evaluation methods are needed to compare different automatic intensity segmentation algorithms among each other. This is a difficult task due to variable image contents, different histogram shapes as well as specific user requirements regarding the extracted image features. Here, a new color-coding-based method is presented which facilitates semi-automatic qualitative as well as quantitative assessment of binarization methods relative to an intensity reference point. The proposed method represents a quick and reliable, quantitative measure for relative binarization quality assessment for individual images. Moreover, two new binarization algorithms based on statistical histogram values and initial histogram limitation are presented. This mode-limited mean (MoLiM) as well as the differential-limited mean (DiLiM) algorithms were implemented in ImageJ and compared to 22 existing global as well as local automatic binarization algorithms using the evaluation method described here. Results suggested that MoLiM quantitatively outperformed 11 and DiLiM 8 of the existing algorithms.
CITED BY (0)  
1 Google Scholar
2 CiteSeerX
3 refSeek
4 Scribd
5 slideshare
6 PdfSR
1 P. . Sahoo, S. Soltani, and a. K. . Wong, “A survey of thresholding techniques,” Comput.Vision, Graph. Image Process., vol. 41, no. 2, pp. 233–260, Feb. 1988.
2 C. A. Glasbey, “An Analysis of Histogram-Based Thresholding Algorithms,” CVGIP:Graphical Models and Image Processing, vol. 55, no. 6. pp. 532–537, 1993.
3 P. Stathis and N. Papamarkos, “An Evaluation Technique for Binarization Algorithms,” vol.14, no. 18, pp. 3011–3030, 2008.
4 R. Unnikrishnan, C. Pantofaru, and M. Hebert, “A Measure for Objective Evaluation of Image Segmentation Algorithms,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, vol. 3, pp. 34–34.
5 J. S. Weszka and A. Rosenfeld, “Threshold Evaluation Techniques,” IEEE Trans. Syst.Man. Cybern., vol. 8, no. 8, pp. 622–629, Aug. 1978.
6 A. Najjar and E. Zagrouba, “An Unsupervised Evaluation Measure of Image Segmentation?: Application to Flower Image,” pp. 448–457, 2012.
7 H. Zhang, S. Cholleti, S. A. Goldman, and J. E. Fritts, “Meta-Evaluation of Image Segmentation Using Machine Learning,” in EEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1 (CVPR’06), vol. 1, pp. 1138–1145.
8 M. Borsotti, P. Campadelli, and R. Schettini, “Quantitative evaluation of color image segmentation results,” Pattern Recognit. Lett., vol. 19, no. 8, pp. 741–747, 1998.
9 J. A. Shufelt, “Performance evaluation and analysis of monocular building extraction from aerial imagery,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 4, pp. 311–326, Apr.1999.
10 C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, pp. 671–675, Jun. 2012.
11 J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein,K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biologicalimage analysis.,” Nat. Methods, vol. 9, no. 7, pp. 676–82, Jul. 2012.
12 J. Brocher, “BioVoxxel Toolbox,” 2014. [Online]. Available: http://fiji.sc/BioVoxxel_Toolbox.[Accessed: 05-Mar-2014].
13 J. Brocher, “Theshold Check (BioVoxxel Toolbox),” 2014. [Online]. Available:http://fiji.sc/BioVoxxel_Toolbox#Threshold_Check. [Accessed: 05-Mar-2014].
14 J. Brocher, “BioVoxxel Fiji update site,” 2014. [Online]. Available:http://sites.imagej.net/BioVoxxel/. [Accessed: 05-Mar-2014].
15 G. Landini, “Auto Thresholds,” 2013. [Online]. Available:http://fiji.sc/wiki/index.php/Auto_Threshold. [Accessed: 29-Nov-2013].
16 G. Landini, “Auto Local Thresholds,” 2013. [Online]. Available:http://fiji.sc/Auto_Local_Threshold. [Accessed: 29-Nov-2013].
17 “Edwin Smith Papyrus.” [Online]. Available:http://upload.wikimedia.org/wikipedia/commons/b/b4/Edwin_Smith_Papyrus_v2.jpg.[Accessed: 24-Jan-2014].
18 H. Zhang, J. E. Fritts, and S. a. Goldman, “Image segmentation evaluation: A survey of unsupervised methods,” Comput. Vis. Image Underst., vol. 110, no. 2, pp. 260–280, May 2008.
19 H. Zhang, J. E. Fritts, and S. a. Goldman, “An entropy-based objective evaluation method for image segmentation,” no. 1, pp. 38–49, Dec. 2003.
20 R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward objective evaluation of image segmentation algorithms.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 929–44, Jun. 2007.
21 J. Freixenet, X. Mu, D. Raba, J. Mart, and X. Cuf, “Yet Another Survey on Image Segmentation?: Region and Boundary Information Integration,” ECCV, pp. 408–422, 2002.
22 F. Ge, S. Wang, and T. Liu, “Image-Segmentation Evaluation From the Perspective of Salient Object Extraction,” 2006 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.- Vol. 1, vol. 1, pp. 1146–1153, 2006.
23 O. D. Trier and T. Taxt, “Evaluation of binarization methods for document images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 3, pp. 312–315, Mar. 1995.
24 A. Kefali, T. Sari, and M. Sellami, “Evaluation of several binarization techniques for old Arabic documents images,” in The First International Symposium on Modeling and Implementing Complex Systems MISC, 2010, no. 1, pp. 88–99.
25 K. Ntirogiannis, B. Gatos, and I. Pratikakis, “An Objective Evaluation Methodology for Document Image Binarization Techniques,” in 2008 The Eighth IAPR International Workshop on Document Analysis Systems, 2008, pp. 217–224.
26 J. K. Udupa, V. R. LeBlanc, Y. Zhuge, C. Imielinska, H. Schmidt, L. M. Currie, B. E.Hirsch, and J. Woodburn, “A framework for evaluating image segmentation algorithms,”Comput. Med. Imaging Graph., vol. 30, no. 2, pp. 75–87, Mar. 2006.
27 J. M. S. Prewitt and M. L. Mendelsohn, “THE ANALYSIS OF CELL IMAGES*,” Ann. N. Y.Acad. Sci., vol. 128, no. 3, pp. 1035–1053, Dec. 2006.
28 W. Doyle, “Operations Useful for Similarity-Invariant Pattern Recognition,” J. ACM, vol. 9,no. 2, pp. 259–267, Apr. 1962.
29 J. Kittler and J. Illingworth, “Minimum error thresholding,” Pattern Recognit., vol. 19, no. 1,pp. 41–47, Jan. 1986.
Dr. Jan Brocher
BioVoxxel 67112, Mutterstadt Germany - Germany
jan.brocher@biovoxxel.de