Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Reversible Data Hiding in the Spatial and Frequency Domains
Ching-Yu Yang, Wu Chih Hu
Pages - 373 - 384     |    Revised - 20-01-2010     |    Published - 20-02-2010
Volume - 3   Issue - 6    |    Publication Date - January 2010  Table of Contents
Reversible data hiding, IWT, Min-max algorithm, Coefficient-bias approach
Combinational lossless data hiding in the spatial and frequency domains is proposed. In the spatial domain, a secret message is embedded in a host medium using the min-max algorithm to generate a stego-image. Subsequently, the stego-image is decomposed into the frequency domain via the integer wavelet transform (IWT). Then, a watermark is hidden in the low-high (LH) and high-low (HL) subbands of the IWT domain using the coefficient-bias approach. Simulations show that the perceptual quality of the image generated by the proposed method and the method¡¦s hiding capability are good. Moreover, the mixed images produced by the proposed method are robust against attacks such as JPEG2000, JPEG, brightness adjustment, and inversion.
CITED BY (10)  
1 Pandey, R., Singh, A. K., Kumar, B., & Mohan, A. (2016). Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimedia Tools and Applications, 1-17.
2 Singh, A. K. (2016). Some New Techniques of Improved Wavelet Domain Watermarking ofr Medical Images.
3 Thanikkal, J. G., Thanikkal, J. G., & Danish, M. A High Capacity Reversible Data Hiding Scheme: A Case Study.
4 Thanikkal, J. G., Danish, M., & Sarwar, S. A New Android Based Steganography Application for Smartphone’s.
5 Singh, A. K., Dave, M., & Mohan, A. (2014). Wavelet based image watermarking: Futuristic concepts in information security. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 84(3), 345-359.
6 Manjunatha Reddy, H. S. (2014). Design of image steganographic systems for covert communication.
7 Poongavanam, V., & Shamala, L. M. an enhanced difference pair mapping steganography method to improve embedding capacity.
8 Boato, G., Carli, M., Battisti, F., Azzoni, M., & Egiazarian, K. (2012). Difference expansion and prediction for high bit-rate reversible data hiding. Journal of Electronic Imaging, 21(3), 033013-1.
9 Thanuja, T. C., Nagaraju, P., Vinay, J., Bhushan, K. N., & Vasanad, N. S. (2011). Hardware implementation of a robust modulo watermarking algorithm. MES Journal of Technology and Management, 2(1), 51-56.
10 Kumari, U., Thanuja, T. C., Vinay, J., Bhushan, K. N., & Vasanad, N. S. (2010, December). Watermarking using modulo algorithms for gray images. In Signal and Image Processing (ICSIP), 2010 International Conference on (pp. 343-348). IEEE.
1 Google Scholar
2 ScientificCommons
3 Academic Index
4 CiteSeerX
5 refSeek
7 Socol@r
8 ResearchGATE
9 Bielefeld Academic Search Engine (BASE)
10 OpenJ-Gate
11 Scribd
12 WorldCat
13 SlideShare
15 PdfSR
1 F. Y. Shih. “Digital watermarking and steganography: fundamentals and techniques”. CRC Press., FL (2008).
2 I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich and T. Kalker. “Digital watermarking and steganography, 2nd Ed.”. Morgan Kaufmann., MA (2008).
3 G. Xuan, J. Zhu, J. Chen, Y. Q. Shi, Z. Ni and W. Su, “Distortionless data hiding based on integer wavelet transform”. Electronics Letters, 38(25): 1646-1648, 2002.
4 H. C. Wu, N. I. Wu, C. S. Tsai and M. S. Hwang. “Image steganographic scheme based on pixel-value differencing and LSB replacement methods”. IEE Proc. Vision Image Signal Processing, 152:611-615, 2005.
5 R. Z. Wang and Y. S. Chen. “High-payload image steganography using two-way block matching”. IEEE T. Signal Processing Letter, 13(3):161-164, 2006.
6 H. M. Al-Otum and N. A. Samara. “Adaptive blind wavelet-based watermarking technique using tree mutual difference”. Journal of Electronic Imaging, 15(4):043011-1~12, 2006.
7 X. Zhu, A. T. S. Ho and P. Marziliano. “A new semi-fragile image watermarking with robust tampering restoration using irregular sampling”. Signal Processing: Image Communications, 22: 515-528, 2007.
8 Y. Govindarajan and S. Dakshinamurthi, “Quality-security uncompromised and plausible watermarking for patent infringement”. International Journal of Image Processing, 1(2):11-20, 2007.
9 J. Tian. “Reversible data embedding using a difference expansion”. IEEE T. Circuits and Systems for Video Technology, 13(8):890-896, 2003.
10 A. M. Alattar. “Reversible watermark using the difference expansion of a generalized integer transform”. IEEE T. Image Processing, 13(8):1147-1156, 2004.
11 Z. Ni, Y. Q. Shi, N. Ansary and W. Su, “Reversible data hiding,” IEEE T. Circuit and System for Video Technology, 16:354-362, 2006.
12 C. C. Lin and N. L. Hsueh. “A lossless data hiding scheme based on three-pixel block differences”. Pattern Recognition, 41:1415-1425, 2008.
13 C. C. Lin, W. L. Tai and C. C. Chang. “Multilevel reversible data hiding based on histogram modification of difference images”. Pattern Recognition, 41:3582-3591, 2008.
14 J. Y. Hsiao, K. F. Chan and J. M. Chang. “Block-based reversible data embedding”. Signal Processing, 89:556-569, 2009.
15 H. W. Tseng and C. C. Chang. “An extended difference expansion algorithm for reversible watermarking”. Image and Vision Computing, 26:1148-1153, 2009.
16 P. Tsai, Y. C. Hu and H. L. Yeh. “Reversible image hiding scheme using predictive coding and histogram shifting”. Signal Processing, 89:1129-1143, 2009.
17 C. Saravanan and R. Ponalagusamy, “Lossless grey-scale image compression using source symbols”. International Journal of Image Processing, 3(5):246-251, 2009.
Associate Professor Ching-Yu Yang
National Penghu University - Taiwan
Mr. Wu Chih Hu
- Taiwan