Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(683.59KB)
This is an Open Access publication published under CSC-OpenAccess Policy.

PUBLICATIONS BY COUNTRIES

Top researchers from over 74 countries worldwide have trusted us because of quality publications.

United States of America
United Kingdom
Canada
Australia
Malaysia
China
Japan
Saudi Arabia
Egypt
India
Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC with Tunable Gain
Farzin Piltan , N. Sulaiman, Zahra Tajpaykar, Payman Ferdosali, Mehdi Rashidi
Pages - 195 - 210     |    Revised - 01-07-2011     |    Published - 05-08-2011
Volume - 2   Issue - 3    |    Publication Date - July / August 2011  Table of Contents
MORE INFORMATION
KEYWORDS
Robot Manipulator, Nonlinear Robust Controller, Tunable Gain, Computed Torque Like Controller, Fuzzy Sliding Mode Controller
ABSTRACT
One of the most active research areas in the field of robotics is robot manipulators control, because these systems are multi-input multi-output (MIMO), nonlinear, time variant and uncertainty. An artificial non linear robust controller design is major subject in this work. At present, robot manipulators are used in unknown and unstructured situation and caused to provide complicated systems, consequently nonlinear classical controllers are used in artificial intelligence control methodologies to design nonlinear robust controller with satisfactory performance (e.g., minimum error, good trajectory, disturbance rejection). Sliding mode controller (SMC) and computed torque controller (CTC) are the best nonlinear robust controllers which can be used in uncertainty nonlinear. Sliding mode controller has two most important challenges in uncertain systems: chattering phenomenon and nonlinear dynamic equivalent part. Computed torque controller works very well when all nonlinear dynamic parameters are known. This research is focused on the applied non-classical method (e.g., Fuzzy Logic) in robust classical method (e.g., Sliding Mode Controller and computed torque controller) in the presence of uncertainties and external disturbance to reduce the limitations. Applying the Mamdani’s error based fuzzy logic controller with minimum rules is the first goal that causes the elimination of the mathematical nonlinear dynamic in SMC and CTC. Second target focuses on the elimination of chattering phenomenon with regard to the variety of uncertainty and external disturbance in fuzzy sliding mode controller and computed torque like controller by optimization the tunable gain. Therefore fuzzy sliding mode controller with tunable gain (GTFSMC) and computed torque like controller with tunable gain (GTCTLC) will be presented in this paper.
CITED BY (91)  
1 Daikh, F. Z., & Khelfi, M. F. A. (2015). Sliding mode with neuro–fuzzy network controller for inverted pendulum. International Journal of Automation and Control, 9(1), 24-36.
2 Esfahani, H. N., Azimirad, V., & Danesh, M. (2015). A Time Delay Controller included terminal sliding mode and fuzzy gain tuning for Underwater Vehicle-Manipulator Systems. Ocean Engineering, 107, 97-107.
3 Lord Bao Yu, Jiang Zhaohui, spring together, Lee thought, & Lu Yuanzhou. (2015). Microenvironment car chain logistics perception and control system design of Anhui Agricultural Sciences, 43 (3), 374-376.
4 Wang Bo, & Bi Yanru. (2014). PID algorithm and implementation of robot control. Computer Technology and Development, 24 (10), 127-130.
5 TAHIR, D. N. INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS (IJAE).
6 Ranjbar, B., Dashti, G., Omidvar, A., Mahmoodi, J., & Karbasi, H. (2014). Tuning New Fuzzy Control for Nonlinear Second Order System. International Journal of Hybrid Information Technology, 7(6), 175-188.
7 Xu, L., Ding, F., Liu, D., & Xu, B. (2014). Tuning method of proportional differential controller for delay-time system based on polynomial approximation. In The 26th Chinese Control and Decision Conference (2014 CCDC).
8 Piltan, F., Bazregar, M., Piran, M., & Akbari, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. IAES International Journal of Artificial Intelligence, 3(1), 36.
9 Mirzaie, M., Piltan, F., Sulaiman, N., Haghighi, S. T., Ghatasheh, N., Elmardi, O. M., ... & Maryam, K. (2014). Design New Rule-based Effect Fuzzy Controller. International Journal of Advanced Science and Technology, 72, 1-18.
10 Piran, M., Piltan, F., Akbari, M., Garg, R., & Bazregar, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. International Journal of Intelligent Systems and Applications, 6(2), 76.
11 Nazari, I., Hosainpour, A., Piltan, F., Emamzadeh, S., & Mirzaie, M. (2014). Design Sliding Mode Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Intelligent Systems and Applications, 6(4), 63.
12 Piltan, F., Sulaiman, N., Ferdosali, P., & Talooki, I. A. Design Model-free Fuzzy Sliding Mode Control of Internal Combustion Engine.
13 Mozafari, N. G., Piltan, F., Shamsodini, M., Yazdanpanah, A., & Roshanzamir, A. (2014). On Line Tuning Premise and Consequence FIS Based on Lyaponuv Theory with Application to Continuum Robot. International Journal of Intelligent Systems and Applications, 6(3), 96.
14 Bazregar, M., Piltan, F., Nabaee, A., & Ebrahimi, M. (2014). Design Modified Fuzzy PD Gravity Controller with Application to Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 6(3), 82.
15 Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Advances in Applied Sciences, 2(4), 171-184.
16 Mansour, T. M., & Kazi, S. (2013). Flexible Manipulator Modified Proportional-Integral-Derivative (MPID) Control Gain Tuning Using Fuzzy Logic. Recent Advances in Electrical Engineering Series, (11).
17 Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications, 5(9), 103.
18 Shamsodini, M., Manei, R., Bekter, A., Ranjbar, B., & Soltani, S. (2013). Design a New Fuzzy Optimize Robust Sliding Surface Gain in Nonlinear Controller. International Journal of Intelligent Systems and Applications, 5(12), 91.
19 Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111.
20 Bazregar, M., Piltan, F., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Information Technology and Computer Science (IJITCS), 6(1), 101.
21 Piltan, F., Bairami, M. A., Aghayari, F., & Rashidian, M. R. (2013). Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator. International Journal of Information Technology and Computer Science (IJITCS), 5(7), 103.
22 Shamsodini, M., Piltan, F., Jafari, M., Sadrnia, O. R., & Mahmoudi, O. (2013). Design Modified Fuzzy Hybrid Technique: Tuning By GDO. International Journal of Modern Education and Computer Science, 5(8), 58.
23 Piltan, F., Zare, S., ShahryarZadeh, F., & Mansoorzadeh, M. (2013). Supervised Optimization of Fuel Ratio in IC Engine Based on Design Baseline Computed Fuel Methodology. International Journal of Information Technology and Computer Science (IJITCS), 5(4), 76.
24 Piltan, F., Jafari, M., Eram, M., Mahmoudi, O., & Sadrnia, O. R. (2013). Design Artificial Intelligence-Based Switching PD plus Gravity for Highly Nonlinear Second Order System. International Journal of Engineering and Manufacturing (IJEM), 3(1), 38.
25 Jalali, A., Piltan, F., Hashemzadeh, M., BibakVaravi, F., & Hashemzadeh, H. (2013). Design Parallel Linear PD Compensation by Fuzzy Sliding Compensator for Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(12), 97.
26 Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator. International Journal of Information Engineering and Electronic Business, 5(5), 57.
27 Moosavi, M., Eram, M., Khajeh, A., Mahmoudi, O., & Piltan, F. (2013). Design New Artificial Intelligence Base Modified PID Hybrid Controller for Highly Nonlinear System. International Journal of Advanced Science and Technology, 57(5), 45-62.
28 Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72.
29 Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation, 2(4), 149.
30 Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design Sliding Mode Modified Fuzzy Linear Controller with Application to Flexible Robot Manipulator. International Journal of Modern Education and Computer Science, 5(10), 53.
31 Piltan, F., Mansoorzadeh, M., Akbari, M., Zare, S., & ShahryarZadeh, F. (2013). Management of Environmental Pollution by Intelligent Control of Fuel in an Internal Combustion Engine. Global Journal of Biodiversity Science And Management, 3(1).
32 Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3).
33 Piltan, F., Mansoorzadeh, M., Zare, S., Shahryarzadeh, F. A. T. E. M. E. H., & Akbari, M. (2013). Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control. International Journal of Electrical and Computer Engineering, 3(2), 171.
34 Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications, 5(12), 135.
35 Haghighi, S. T., Soltani, S., Piltan, F., Kamgari, M., & Zare, S. (2013). Evaluation Performance of IC Engine: linear tunable gain computed torque controller Vs. Sliding mode controller. International Journal of Intelligent Systems and Applications, 5(6), 78.
36 Jalali, A., Piltan, F., Keshtgar, M., & Jalali, M. (2013). Colonial Competitive Optimization Sliding Mode Controller with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications, 5(7), 50.
37 Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business, 5(1), 1.
38 Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications, 5(5), 1.
39 Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123.
40 Jalali, A., Piltan, F., Gavahian, A., & Jalali, M. (2013). Model-free adaptive fuzzy sliding mode controller optimized by particle swarm for robot manipulator. International Journal of Information Engineering and Electronic Business, 5(1), 68.
41 Piltan, F., Piran, M., Bazregar, M., & Akbari, M. (2013). Design High Impact Fuzzy Baseline Variable Structure Methodology to Artificial Adjust Fuel Ratio. International Journal of Intelligent Systems and Applications, 5(2), 59.
42 Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
43 Piltan, F., & Haghighi, S. T. Design Adaptive MIMO Fuzzy Sliding Mode Algorithm Based on Inverse Dynamic Model: Applied to Second Order Nonlinear System.Piltan, F., & Haghighi, S. T. Evolutionary Design Auto Tune Sliding Surface Slope Adjust of Artificial Backstepping Applied to Artificial Estimator Sliding Mode Based Position Algorithm.
44 Kada, B. (2012, March). A New Methodology to Design Sliding-PID Controllers: Application to Missile Flight Control System. In International Federation of Automatic Control IFAC Conference on Advances in PID Control, Brescia,(Italy) (Vol. 2, No. 1, pp. 673-678).
45 Piltan, F., Piran, M., Akbari, M., & Barzegar, M. (2012). Baseline tuning methodology supervisory sliding mode methodology: Applied to IC engine. International Journal of Advances in Applied Sciences, 1(3), 116-124.
46 Piltan, F., Bayat, R., Mehara, S., & Meigolinedjad, J. (2012). GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace. International Journal of Information Engineering and Electronic Business, 4(5), 17.
47 Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation, 1(4), 175.
48 Piltan, F., Rahmdel, S., Mehrara, S., & Bayat, R. (2012). Sliding mode methodology vs. Computed torque methodology using matlab/simulink and their integration into graduate nonlinear control courses. International Journal of Engineering, 6(3), 142-177.
49 Piltan, F., Siamak, S., Bairami, M. A., & Nazari, I. (2012). Gradient descent optimal chattering free sliding mode fuzzy control design: LYAPUNOV approach. International Journal of Advanced Science and Technology, 43, 73-90.
50 Piltan, F., Bayat, R., Aghayari, F., & Boroomand, B. (2012). Design Error-Based Linear Model-Free Evaluation Performance Computed Torque Controller. International Journal of Robotics and Automation, 3(3), 151-166.
51 Piltan, F., Akbari, M., Piran, M., & Bazregar, M. (2012). Design Model Free Switching Gain Scheduling Baseline Controller with Application to Automotive Engine. International Journal of Information Technology and Computer Science (IJITCS), 5(1), 65.
52 Piltan, F., Aghayari, F., Rashidian, M. R., & Shamsodini, M. (2012). A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator. International Journal of Robotics and Automation, 3(1), 45-58.
53 Piltan, F., Jahed, A., Rezaie, H., & Boroomand, B. (2012). Methodology of Robust Linear On-line High Speed Tuning for Stable Sliding Mode Controller: Applied to Nonlinear System. International Journal of Control and Automation, 5(3), 217-236.
54 Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211.
55 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications, 4(11), 40.
56 Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
57 Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141.
58 Apr, D., & Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
59 Piltan, F., Keshavarz, M., Badri, A., & Zargari, A. (2012). Design Novel Nonlinear Controller Applied to RobotManipulator: Design New Feedback Linearization Fuzzy Controller with Minimum Rule Base Tuning Method. International Journal of Robotics and Automation, 3(1), 1-12.
60 Seven Tir Ave, S. Effect of Rule Base on the Fuzzy-Based Tuning Fuzzy Sliding Mode Controller: Applied to 2 nd Order Nonlinear System.
61 Piltan, F., Dialame, M., Zare, A., & Badri, A. (2012). Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator. International Journal of Engineering, 6(1), 25-41.
62 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Methodology of Mathematical Error-Based Tuning Sliding Mode Controller. International Journal of Engineering, 6(2), 96-117.
63 Piltan, F., Hosainpour, A., Mazlomian, E., Shamsodini, M., & Yarmahmoudi, M. H. (2012). Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach. International Journal of Robotics and Automation, 3(3), 77-105.
64 Seven Tir Ave, S. Design Robust Backstepping on-line Tuning Feedback Linearization Control Applied to IC Engine.
65 Piltan, F., Nazari, I., Siamak, S., & Ferdosali, P. (2012). Methodology of FPGA-based mathematical error-based tuning sliding mode controller. Methodology, 5(1).
66 Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
67 Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., & Hosainpour, A. (2012). PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 167-191.
68 Tibaduiza, D. A., Amaya, I., Rodríguez, S., Mejia, N., & Flórez, M. (2011). Implementación de un control fuzzy para el control cinemático directo en un robot manipulador. Ingeniare. Revista chilena de ingeniería, 19(3), 312-322.
69 Piltan, F., Sulaiman, N., Jalali, A., Siamak, S., & Nazari, I. (2011). Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control. International Journal of Control and Automation, 4(4), 91-110.
70 Piltan, F., Allahdadi, S., Mohammad, A. B., & Nasiri, H. (2011). Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator. International Journal of Robotics and Automation, 3(1), 27-44.
71 Piltan, F., Bairami, M. A., Aghayari, F., & Allahdadi, S. (2011). Design adaptive artificial inverse dynamic controller: Design sliding mode fuzzy adaptive new inverse dynamic fuzzy controller. International Journal of Robotics and Automation (IJRA), 3(1), 13.
72 Piltan, F., Sulaiman, N., Marhaban, M. H., & Ramli, R. (2011). Design On-Line Tunable Gain Artificial Nonlinear Controller. Journal of Advances In Computer Research, 2(4), 75-83.
73 Piltan, F., Sulaiman, N., Roosta, S., Marhaban, M. H., & Ramli, R. (2011). Design a new sliding mode adaptive hybrid fuzzy controller. Journal of Advanced Science & Engineering Research, 1(1), 115-123.
74 Piltan, F., Sulaiman, N. A. S. I. R. I., & AsadiTalooki, I. (2011). Evolutionary Design on-line Sliding Fuzzy Gain Scheduling Sliding Mode Algorithm: Applied to Internal Combustion Engine. International Journal of Engineering Science and Technology, 3(10), 7301-7308.
75 Piltan, F., Sulaiman, N., Zare, A., Allahdadi, S., & Dialame, M. (2011). Design adaptive fuzzy inference sliding mode algorithm: applied to robot arm. International Journal of Robotics and Automation, 2(5), 283-297.
76 Piltan, F., Sulaiman, N., Gavahian, A., Roosta, S., & Soltani, S. (2011). On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Sliding Mode Controller Based on Lyaponuv Theory. International Journal of Robotics and Automation, 2(5), 381-400.
77 Piltan, F., Sulaiman, N., Roosta, S., Gavahian, A., & Soltani, S. (2011). Artificial Chattering Free on-line Fuzzy Sliding Mode Algorithm for Uncertain System: Applied in Robot Manipulator. International Journal of Engineering, 5(5), 360-379.
78 Seven Tir Ave, S. Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
79 Piltan, F., Sulaiman, N., Ferdosali, P., Rashidi, M., & Tajpeikar, Z. (2011). Adaptive MIMO Fuzzy Compensate Fuzzy Sliding Mode Algorithm: Applied to Second Order Nonlinear System. International Journal of Engineering, 5(5), 380-398.
80 Piltan, F., Sulaiman, N., Jalali, A., & Aslansefat, K. (2011). Evolutionary Design of Mathematical tunable FPGA Based MIMO Fuzzy Estimator Sliding Mode Based Lyapunov Algorithm: Applied to Robot Manipulator. International Journal of Robotics and Automation, 2(5), 317-343.
81 Piltan, F., Sulaiman, N., Rashidi, M., Tajpaikar, Z., & Ferdosali, P. (2011). Design and Implementation of Sliding Mode Algorithm: Applied to Robot Manipulator-A Review. International Journal of Robotics and Automation, 2(5), 265-282.
82 Piltan, F., Sulaiman, N., Gavahian, A., & Marhaban, M. H. Sliding Mode Controller for robot manipulator using FPGA.
83 Piltan, F., Sulaiman, N., Roosta, S., Gavahian, A., & Soltani, S. (2011). Evolutionary Design of Backstepping Artificial Sliding Mode Based Position Algorithm: Applied to Robot Manipulator. International Journal of Engineering, 5(5), 419-434.
84 Piltan, F., Sulaiman, N., Allahdadi, S., Dialame, M., & Zare, A. (2011). Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control. International Journal of Artificial intelligence and Expert System, 2(5), 208-228.
85 Piltan, F., Sulaiman, N., Ferdosali, P., & Talooki, I. A. (2011). Design Model Free Fuzzy Sliding Mode Control: Applied to Internal Combustion Engine. International Journal of Engineering, 5(4), 302-312.
86 Piltan, F., Sulaiman, N., Jalali, A., & Narouei, F. D. (2011). Design of Model Free Adaptive Fuzzy Computed Torque Controller: Applied to Nonlinear Second Order System. International Journal of Robotics and Automation, 2(4), 232-244.
87 Piltan, F., Sulaiman, N., Nasiri, H., Allahdadi, S., & Bairami, M. A. (2011). Novel Robot Manipulator Adaptive Artificial Control: Design a Novel SISO Adaptive Fuzzy Sliding Algorithm Inverse Dynamic Like Method. International Journal of Engineering, 5(5), 399-418.
88 Piltan, F., Jalali, A., Sulaiman, N., Gavahian, A., & Siamak, S. (2011). Novel artificial control of nonlinear uncertain system: design a novel modified PSO SISO Lyapunov based fuzzy sliding mode algorithm. International Journal of Robotics and Automation, 2(5), 298-316.
89 Piltan, F., Sulaiman, N., Talooki, I. A., & Ferdosali, P. (2011). Control of IC Engine: Design a Novel MIMO Fuzzy Backstepping Adaptive Based Fuzzy Estimator Variable Structure Control. International Journal of Robotics and Automation, 2(5), 360-380.
90 Piltan, F., Sulaiman, N., Zargari, A., Keshavarz, M., & Badri, A. (2011). Design PID-Like Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator. International Journal of Artificial intelligence and expert system, 2(4), 184-195.
91 Piltan, F., Haghighi, S. T., Sulaiman, N., Nazari, I., & Siamak, S. (2011). Artificial control of PUMA robot manipulator: A-review of fuzzy inference engine and application to classical controller. International Journal of Robotics and Automation, 2(5), 401-425.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 T. R. Kurfess, Robotics and automation handbook: CRC, 2005.
2 K . Ogata, Modern control engineering: Prentice Hall, 2009.
3 B. Siciliano and O. Khatib, Springer handbook of robotics: Springer-Verlag New York Inc, 2008.
4 L. Reznik, Fuzzy controllers: Butterworth-Heinemann, 1997.
5 S. Mohan and S. Bhanot, "Comparative study of some adaptive fuzzy algorithms for manipulator control," International Journal of Computational Intelligence, vol. 3, pp. 303–311, 2006.
6 O. Kaynak, "Guest editorial special section on computationally intelligent methodologies and sliding-mode control," IEEE Transactions on Industrial Electronics, vol. 48, pp. 2-3, 2001.
7 Shahnazi R., H. Shanechi, N. Pariz. "Position control of induction and servomotors: A novel adaptive fuzzy PI sliding mode control". IEEE Conferences on power engineering, 2006, P.P. 1-9.
8 Medhaffar H., N. Derbel, and T. Damak. "A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator". Int. Journal on modeling, identification and control,1(1), 23-29, 2006.
9 Shahnazi R., H. Shanechi, N. Pariz. "Position control of induction and servomotors: A novel adaptive fuzzy PI sliding mode control". IEEE Journals on energy conversions, 23(1), 138-147,2008.
10 Weng C. C., W. S. Yu. "Adaptive fuzzy sliding mode control for linear time-varying uncertain systems". IEEE conference on fuzzy systems, 2008, P.P: 1483-1490.
11 Yu Z. X. "Adaptive sliding mode-like fuzzy logic control for nonlinear systems". Journal of communication and computer, 6(1), 53-60, 2009.
12 Piltan, F., et al. "Design sliding mode controller for robot manipulator with artificial tunable gain".Canaidian Journal of pure and applied science, 5 (2), 1573-1579, 2011.
13 B. S. R. Armstrong, "Dynamics for robot control: friction modeling and ensuring excitation during parameter identification," 1988.
14 B. Armstrong, et al., "The explicit dynamic model and inertial parameters of the PUMA 560 arm,"2002, pp. 510-518.
15 P. I. Corke and B. Armstrong-Helouvry, "A search for consensus among model parameters reported for the PUMA 560 robot," 2002, pp. 1608-1613.
16 V. Utkin, "Variable structure systems with sliding modes," Automatic Control, IEEE Transactions on, vol. 22, pp. 212-222, 2002.
17 R. A. DeCarlo, et al., "Variable structure control of nonlinear multivariable systems:a tutorial,"Proceedings of the IEEE, vol. 76, pp. 212-232, 2002.
18 K. D. Young, et al., "A control engineers guide to sliding mode control," 2002, pp. 1-14.
19 C. C. Weng and W. S. Yu, "Adaptive fuzzy sliding mode control for linear time-varying uncertain systems," 2008, pp. 1483-1490.
20 M. Ertugrul and O. Kaynak, "Neuro sliding mode control of robotic manipulators," Mechatronics,vol. 10, pp. 239-263, 2000.
21 P. Kachroo and M. Tomizuka, "Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems," Automatic Control, IEEE Transactions on, vol. 41, pp.1063-1068, 2002.
22 Y. Li and Q. Xu, "Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator," Control Systems Technology,IEEE Transactions on, vol. 18, pp. 798-810, 2010.
23 B. Wu, et al., "An integral variable structure controller with fuzzy tuning design for electro-hydraulic driving Stewart platform," 2006, pp. 5-945.
24 L. A. Zadeh, "Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic," Fuzzy Sets and Systems, vol. 90, pp. 111-127, 1997.
25 J. Zhou and P. Coiffet, "Fuzzy control of robots," 2002, pp. 1357-1364.
26 S. Banerjee and P. Y. Woo, "Fuzzy logic control of robot manipulator," 2002, pp. 87-88.
27 K. Kumbla, et al., "Soft computing for autonomous robotic systems,"Computers and Electrical Engineering, vol. 26, pp. 5-32, 2000.
28 C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller. I," IEEE Transactions on systems, man and cybernetics, vol. 20, pp. 404-418, 1990.
29 R. J. Wai, et al., "Implementation of artificial intelligent control in single-link flexible robot arm,"2003, pp. 1270-1275.
30 R. J. Wai and M. C. Lee, "Intelligent optimal control of single-link flexible robot arm," Industrial Electronics, IEEE Transactions on, vol. 51, pp. 201-220, 2004.
31 M. B. Menhaj and M. Rouhani, "A novel neuro-based model reference adaptive control for a two link robot arm," 2002, pp. 47-52.
32 D. Nguyen-Tuong, et al., "Computed torque control with nonparametric regression models," 2008,
33 A. Vivas and V. Mosquera, "Predictive functional control of a PUMA robot," 2005.
34 Piltan. F. et al., "Design Artificial of Robust Control of second Order System Based on Adaptive Fuzzy Gain Scheduling" World Applied Science Journal, 13(5), 1085-1092, 2011.
35 Piltan. F. et al., " Artificial Control of second Order System Based on AFGSMC" Austrailian Journal of Basic and Applied Science, 5(6), 509-522, 2011.
Mr. Farzin Piltan
SSP Co. - Malaysia
SSP.ROBOTIC@yahoo.com
Dr. N. Sulaiman
- Malaysia
Mr. Zahra Tajpaykar
- Iran
Dr. Payman Ferdosali
- Iran
Mr. Mehdi Rashidi
- Iran