Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(671.03KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Design Error-based Linear Model-free Evaluation Performance Computed Torque Controller
Farzin Piltan, Reza Bayat, Farid Aghayari, Bamdad Boroomand
Pages - 151 - 166     |    Revised - 15-05-2012     |    Published - 20-06-2012
Volume - 3   Issue - 3    |    Publication Date - May / June 2012  Table of Contents
MORE INFORMATION
KEYWORDS
Computed Torque Controller, Linear On-line Tuning Method, Gain Updating Factor, Linear Inner Loop Gain, Error-based Tuning Method
ABSTRACT
Design a nonlinear controller for second order nonlinear uncertain dynamical systems is one of the most important challenging works. This research focuses on the design, implementation and analysis of a model-free linear error-based tuning computed torque controller for highly nonlinear dynamic second order system, in presence of uncertainties. In order to provide high performance nonlinear methodology, computed torque controller is selected. Pure computed torque controller can be used to control of partly known nonlinear dynamic parameters of nonlinear systems. Conversely, pure computed torque controller is used in many applications; it has an important drawback namely; nonlinear equivalent dynamic formulation in uncertain dynamic parameter. In order to solve the uncertain nonlinear dynamic parameters, implement easily and avoid mathematical model base controller, model-free performance/error-based linear methodology with three inputs and one output is applied to pure computed torque controller. The results demonstrate that the error-based linear tuning computed torque controller is a model-based controllers which works well in certain and uncertain system. Pure computed torque controller has difficulty in handling unstructured model uncertainties. To solve this problem applied linear model-free error -based tuning method to computed torque controller for adjusting the linear inner loop gain (K ). Since the linear inner loop gain (K) is adjusted by linear error-based tuning method, it is linear and continuous. In this research new K is obtained by the previous K multiple gain updating factor (á) which is a coefficient varies between half to two.
CITED BY (37)  
1 Bazregar, M., Piltan, F., Nabaee, A., & Ebrahimi, M. (2014). Design Modified Fuzzy PD Gravity Controller with Application to Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 6(3), 82.
2 Nazari, I., Hosainpour, A., Piltan, F., Emamzadeh, S., & Mirzaie, M. (2014). Design Sliding Mode Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 6(4), 63.
3 Piran, M., Piltan, F., Akbari, M., Garg, R., & Bazregar, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. International Journal of Intelligent Systems and Applications (IJISA), 6(2), 76.
4 Awatef, A., Mouna, B. H., & Sbita, L. (2014, November). A robot manipulator dynamic modeling and linearizing control. In Electrical Sciences and Technologies in Maghreb (CISTEM), 2014 International Conference on (pp. 1-5). IEEE.
5 Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(5), 1.
6 Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123.
7 Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 1.
8 Piltan, F., Rafaati, M. J., Khazaeni, F., Hosainpour, A., & Soltani, S. (2013). A Design High Impact Lyapunov Fuzzy PD-Plus-Gravity Controller with Application to Rigid Manipulator. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 17.
9 Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(12), 135.
10 Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3).
11 Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design Sliding Mode Modified Fuzzy Linear Controller with Application to Flexible Robot Manipulator. International Journal of Modern Education and Computer Science (IJMECS), 5(10), 53.
12 Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(5), 57.
13 Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72.
14 Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation (IJRA), 2(4), 149-162.
15 Moosavi, M., Eram, M., Khajeh, A., Mahmoudi, O., & Piltan, F. (2013). Design New Artificial Intelligence Base Modified PID Hybrid Controller for Highly Nonlinear System. International Journal of Advanced Science and Technology, 57.
16 Piltan, F., Jafari, M., Eram, M., Mahmoudi, O., & Sadrnia, O. R. (2013). Design Artificial Intelligence-Based Switching PD plus Gravity for Highly Nonlinear Second Order System. International Journal of Engineering and Manufacturing (IJEM), 3(1), 38.
17 Zahmatkesh, S., Piltan, F., Heidari, K., Shamsodini, M., & Heidari, S. (2013). Artificial Error Tuning Based on Design a Novel SISO Fuzzy Backstepping Adaptive Variable Structure Control. International Journal of Intelligent Systems and Applications (IJISA), 5(11), 34.
18 Kazeminasab, M., Piltan, F., Esmaeili, Z., Mirshekaran, M., & Salehi, A. (2013). Design Parallel Fuzzy Partly Inverse Dynamic Method plus Gravity Control for Highly Nonlinear Continuum Robot. International Journal of Intelligent Systems and Applications (IJISA), 6(1), 112.
19 Heidari, S., Piltan, F., Shamsodini, M., Heidari, K., & Zahmatkesh, S. (2013). Design New Nonlinear Controller with Parallel Fuzzy Inference System Compensator to Control of Continuum Robot Manipulator. International Journal of Control and Automation, 6(4).
20 Shamsodini, M., Piltan, F., Jafari, M., reza Sadrnia, O., & Mahmoudi, O. (2013). Design Modified Fuzzy Hybrid Technique: Tuning By GDO. International Journal of Modern Education and Computer Science (IJMECS), 5(8), 58.
21 Piltan, F., Bairami, M. A., Aghayari, F., & Rashidian, M. R. (2013). Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator. International Journal of Information Technology and Computer Science (IJITCS), 5(7), 103.
22 Bazregar, M., Piltan, F., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Information Technology and Computer Science (IJITCS), 6(1), 101.
23 Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111.
24 Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(9), 103.
25 Bayat, R. (2013). Artificial Intelligence SVC Based Control of Two Machine Transmission System. International Journal of Intelligent Systems and Applications (IJISA), 5(8), 1.
26 Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Advances in Applied Sciences, 2(4), 171-184.
27 Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
28 Piltan, F., Hosainpour, A., Mazlomian, E., Shamsodini, M., & Yarmahmoudi, M. H. (2012). Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach. International Journal of Robotics and Automation, 3(3), 77-105.
29 Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141.
30 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications (IJISA), 4(11), 40.
31 Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211.
32 Piltan, F., Rahmdel, S., Mehrara, S., & Bayat, R. (2012). Sliding mode methodology vs. Computed torque methodology using matlab/simulink and their integration into graduate nonlinear control courses. International Journal of Engineering, 6(3), 142-177.
33 Piltan, F., Bayat, R., Mehara, S., & Meigolinedjad, J. (2012). GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace. International Journal of Information Engineering and Electronic Business (IJIEEB), 4(5), 17.
34 Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation (IJRA), 1(4), 175-189.
35 Piltan, F., Mehrara, S., Bayat, R., & Rahmdel, S. (2012). Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
36 Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
37 Seven Tir Ave, S. Effect of Rule Base on the Fuzzy-Based Tuning Fuzzy Sliding Mode Controller: Applied to 2 nd Order Nonlinear System.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 T. R. Kurfess, Robotics and automation handbook: CRC, 2005.
2 J. J. E. Slotine and W. Li, Applied nonlinear control vol. 461: Prentice hall Englewood Cliffs,NJ, 1991.
3 K. Ogata, Modern control engineering: Prentice Hall, 2009.
4 L. Cheng, Z. G. Hou, M. Tan, D. Liu and A. M. Zou, "Multi-agent based adaptive consensus control for multiple manipulators with kinematic uncertainties," 2008, pp. 189-194.
5 J. J. D Azzo, C. H. Houpis and S. N. Sheldon, Linear control system analysis and design with MATLAB: CRC, 2003.
6 B. Siciliano and O. Khatib, Springer handbook of robotics: Springer-Verlag New York Inc,2008.
7 I. Boiko, L. Fridman, A. Pisano and E. Usai, "Analysis of chattering in systems with secondorder sliding modes," IEEE Transactions on Automatic Control, No. 11, vol. 52,pp. 2085-2102, 2007.
8 J. Wang, A. Rad and P. Chan, "Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching," Fuzzy Sets and Systems, No. 1, vol. 122,pp. 21-30, 2001.
9 C. Wu, "Robot accuracy analysis based on kinematics," IEEE Journal of Robotics and Automation, No. 3, vol. 2, pp. 171-179, 1986.
10 H. Zhang and R. P. Paul, "A parallel solution to robot inverse kinematics," IEEE conference proceeding, 2002, pp. 1140-1145.
11 J. Kieffer, "A path following algorithm for manipulator inverse kinematics," IEEE conference proceeding, 2002, pp. 475-480.
12 Z. Ahmad and A. Guez, "On the solution to the inverse kinematic problem(of robot)," IEEE conference proceeding, 1990, pp. 1692-1697.
13 F. T. Cheng, T. L. Hour, Y. Y. Sun and T. H. Chen, "Study and resolution of singularities for a 6-DOF PUMA manipulator," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, No. 2, vol. 27, pp. 332-343, 2002.
14 M. W. Spong and M. Vidyasagar, Robot dynamics and control: Wiley-India, 2009.
15 A. Vivas and V. Mosquera, "Predictive functional control of a PUMA robot," Conference Proceedings, 2005.
16 D. Nguyen-Tuong, M. Seeger and J. Peters, "Computed torque control with nonparametric regression models," IEEE conference proceeding, 2008, pp. 212-217.
17 V. Utkin, "Variable structure systems with sliding modes," Automatic Control, IEEE Transactions on, No. 2, vol. 22, pp. 212-222, 2002.
18 R. A. DeCarlo, S. H. Zak and G. P. Matthews, "Variable structure control of nonlinear multivariable systems: a tutorial," Proceedings of the IEEE, No. 3, vol. 76, pp. 212-232,2002.
19 K. D. Young, V. Utkin and U. Ozguner, "A control engineers guide to sliding mode control,"IEEE conference proceeding, 2002, pp. 1-14.
20 O. Kaynak, "Guest editorial special section on computationally intelligent methodologies and sliding-mode control," IEEE Transactions on Industrial Electronics, No. 1, vol. 48, pp. 2-3,2001.
21 J. J. Slotine and S. Sastry, "Tracking control of non-linear systems using sliding surfaces,with application to robot manipulators†," International Journal of Control, No. 2, vol. 38, pp.465-492, 1983.
22 J. J. E. Slotine, "Sliding controller design for non-linear systems," International Journal of Control, No. 2, vol. 40, pp. 421-434, 1984.
23 R. Palm, "Sliding mode fuzzy control," IEEE conference proceeding,2002, pp. 519-526.
24 C. C. Weng and W. S. Yu, "Adaptive fuzzy sliding mode control for linear time-varying uncertain systems," IEEE conference proceeding, 2008, pp. 1483-1490.
25 M. Ertugrul and O. Kaynak, "Neuro sliding mode control of robotic manipulators,"Mechatronics Journal, No. 1, vol. 10, pp. 239-263, 2000.
26 P. Kachroo and M. Tomizuka, "Chattering reduction and error convergence in the slidingmode control of a class of nonlinear systems," Automatic Control, IEEE Transactions on, No.7, vol. 41, pp. 1063-1068, 2002.
27 H. Elmali and N. Olgac, "Implementation of sliding mode control with perturbation estimation (SMCPE)," Control Systems Technology, IEEE Transactions on, No. 1, vol. 4, pp. 79-85,2002.
28 J. Moura and N. Olgac, "A comparative study on simulations vs. experiments of SMCPE,"IEEE conference proceeding, 2002, pp. 996-1000.
29 Y. Li and Q. Xu, "Adaptive Sliding Mode Control With Perturbation Estimation and PID Sliding Surface for Motion Tracking of a Piezo-Driven Micromanipulator," Control Systems Technology, IEEE Transactions on, No. 4, vol. 18, pp. 798-810, 2010.
30 B. Wu, Y. Dong, S. Wu, D. Xu and K. Zhao, "An integral variable structure controller with fuzzy tuning design for electro-hydraulic driving Stewart platform," IEEE conference proceeding, 2006, pp. 5-945.
31 Farzin Piltan , N. Sulaiman, Zahra Tajpaykar, Payman Ferdosali, Mehdi Rashidi, “Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC with Tunable Gain,”International Journal of Robotic and Automation, 2 (3): 205-220, 2011.
32 Farzin Piltan, A. R. Salehi and Nasri B Sulaiman.,” Design artificial robust control of second order system based on adaptive fuzzy gain scheduling,” world applied science journal(WASJ), 13 (5): 1085-1092, 2011
33 Farzin Piltan, N. Sulaiman, Atefeh Gavahian, Samira Soltani, Samaneh Roosta, “Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with Minimum Rule Base,” International Journal of Robotic and Automation, 2 (3): 146-156, 2011.
34 Farzin Piltan , A. Zare, Nasri B. Sulaiman, M. H. Marhaban and R. Ramli, , “A Model Free Robust Sliding Surface Slope Adjustment in Sliding Mode Control for Robot Manipulator,”World Applied Science Journal, 12 (12): 2330-2336, 2011.
35 Farzin Piltan , A. H. Aryanfar, Nasri B. Sulaiman, M. H. Marhaban and R. Ramli “Design Adaptive Fuzzy Robust Controllers for Robot Manipulator,” World Applied Science Journal,12 (12): 2317-2329, 2011.
36 Farzin Piltan, N. Sulaiman , Arash Zargari, Mohammad Keshavarz, Ali Badri , “Design PIDLike Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator,” International Journal of Artificial intelligence and expert system, 2 (4):184-195, 2011.
37 Farzin Piltan, Nasri Sulaiman, M. H. Marhaban and R. Ramli, “Design On-Line Tunable Gain Artificial Nonlinear Controller,” Journal of Advances In Computer Research, 2 (4): 75-83,2011.
38 Farzin Piltan, N. Sulaiman, Payman Ferdosali, Iraj Assadi Talooki, “ Design Model Free Fuzzy Sliding Mode Control: Applied to Internal Combustion Engine,” International Journal of Engineering, 5 (4):302-312, 2011.
39 Farzin Piltan, N. Sulaiman, Samaneh Roosta, M.H. Marhaban, R. Ramli, “Design a New Sliding Mode Adaptive Hybrid Fuzzy Controller,” Journal of Advanced Science & Engineering Research , 1 (1): 115-123, 2011.
40 Farzin Piltan, Atefe Gavahian, N. Sulaiman, M.H. Marhaban, R. Ramli, “Novel Sliding Mode Controller for robot manipulator using FPGA,” Journal of Advanced Science & Engineering Research, 1 (1): 1-22, 2011.
41 Farzin Piltan, N. Sulaiman, A. Jalali & F. Danesh Narouei, “Design of Model Free Adaptive Fuzzy Computed Torque Controller: Applied to Nonlinear Second Order System,”International Journal of Robotics and Automation, 2 (4):232-244, 2011.
42 Farzin Piltan, N. Sulaiman, Iraj Asadi Talooki, Payman Ferdosali, “Control of IC Engine:Design a Novel MIMO Fuzzy Backstepping Adaptive Based Fuzzy Estimator Variable Structure Control ,” International Journal of Robotics and Automation, 2 (5):360-380, 2011.
43 Farzin Piltan, N. Sulaiman, Payman Ferdosali, Mehdi Rashidi, Zahra Tajpeikar, “Adaptive MIMO Fuzzy Compensate Fuzzy Sliding Mode Algorithm: Applied to Second Order Nonlinear System,” International Journal of Engineering, 5 (5): 380-398, 2011.
44 Farzin Piltan, N. Sulaiman, Hajar Nasiri, Sadeq Allahdadi, Mohammad A. Bairami, “Novel Robot Manipulator Adaptive Artificial Control: Design a Novel SISO Adaptive Fuzzy Sliding Algorithm Inverse Dynamic Like Method,” International Journal of Engineering, 5 (5): 399-418, 2011.
45 Farzin Piltan, N. Sulaiman, Sadeq Allahdadi, Mohammadali Dialame, Abbas Zare, “Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control,” International Journal of Artificial intelligence and Expert System, 2(5):208-228, 2011.
46 Farzin Piltan, SH. Tayebi HAGHIGHI, N. Sulaiman, Iman Nazari, Sobhan Siamak, “Artificial Control of PUMA Robot Manipulator: A-Review of Fuzzy Inference Engine And Application to Classical Controller ,” International Journal of Robotics and Automation, 2 (5):401-425, 2011.
47 Farzin Piltan, N. Sulaiman, Abbas Zare, Sadeq Allahdadi, Mohammadali Dialame, “Design Adaptive Fuzzy Inference Sliding Mode Algorithm: Applied to Robot Arm,” International Journal of Robotics and Automation , 2 (5): 283-297, 2011.
48 Farzin Piltan, Amin Jalali, N. Sulaiman, Atefeh Gavahian, Sobhan Siamak, “Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modified PSO SISO Lyapunov Based Fuzzy Sliding Mode Algorithm ,” International Journal of Robotics and Automation, 2(5): 298-316, 2011.
49 Farzin Piltan, N. Sulaiman, Amin Jalali, Koorosh Aslansefat, “Evolutionary Design of Mathematical tunable FPGA Based MIMO Fuzzy Estimator Sliding Mode Based Lyapunov Algorithm: Applied to Robot Manipulator,” International Journal of Robotics and Automation,2 (5):317-343, 2011.
50 Farzin Piltan, N. Sulaiman, Samaneh Roosta, Atefeh Gavahian, Samira Soltani,“Evolutionary Design of Backstepping Artificial Sliding Mode Based Position Algorithm:Applied to Robot Manipulator,” International Journal of Engineering, 5 (5):419-434, 2011.
51 Farzin Piltan, N. Sulaiman, S.Soltani, M. H. Marhaban & R. Ramli, “An Adaptive sliding surface slope adjustment in PD Sliding Mode Fuzzy Control for Robot Manipulator,”International Journal of Control and Automation , 4 (3): 65-76, 2011.
52 Farzin Piltan, N. Sulaiman, Mehdi Rashidi, Zahra Tajpaikar, Payman Ferdosali, “Design and Implementation of Sliding Mode Algorithm: Applied to Robot Manipulator-A Review ,”International Journal of Robotics and Automation, 2 (5):265-282, 2011.
53 Farzin Piltan, N. Sulaiman, Amin Jalali, Sobhan Siamak, and Iman Nazari, “Control of Robot Manipulator: Design a Novel Tuning MIMO Fuzzy Backstepping Adaptive Based Fuzzy Estimator Variable Structure Control ,” International Journal of Control and Automation, 4(4):91-110, 2011.
54 Farzin Piltan, N. Sulaiman, Atefeh Gavahian, Samaneh Roosta, Samira Soltani, “On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Sliding Mode Controller Based on Lyaponuv Theory,” International Journal of Robotics and Automation, 2(5):381-400, 2011.
55 Farzin Piltan, N. Sulaiman, Samaneh Roosta, Atefeh Gavahian, Samira Soltani, “Artificial Chattering Free on-line Fuzzy Sliding Mode Algorithm for Uncertain System: Applied in Robot Manipulator,” International Journal of Engineering, 5 (5):360-379, 2011.
56 Farzin Piltan, N. Sulaiman and I.AsadiTalooki, “Evolutionary Design on-line Sliding Fuzzy Gain Scheduling Sliding Mode Algorithm: Applied to Internal Combustion Engine,”International Journal of Engineering Science and Technology, 3 (10):7301-7308, 2011.
57 Farzin Piltan, Nasri B Sulaiman, Iraj Asadi Talooki and Payman Ferdosali.,” Designing OnLine Tunable Gain Fuzzy Sliding Mode Controller Using Sliding Mode Fuzzy Algorithm:Applied to Internal Combustion Engine,” world applied science journal (WASJ), 15 (3): 422-428, 2011.
58 B. K. Yoo and W. C. Ham, "Adaptive control of robot manipulator using fuzzy compensator,"Fuzzy Systems, IEEE Transactions on, No. 2, vol. 8, pp. 186-199, 2002.
59 H. Medhaffar, N. Derbel and T. Damak, "A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator," International Journal of Modelling,Identification and Control, No. 1, vol. 1, pp. 23-29, 2006.
60 Y. Guo and P. Y. Woo, "An adaptive fuzzy sliding mode controller for robotic manipulators,"Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, No. 2,vol. 33, pp. 149-159, 2003.
61 C. M. Lin and C. F. Hsu, "Adaptive fuzzy sliding-mode control for induction servomotor systems," Energy Conversion, IEEE Transactions on, No. 2, vol. 19, pp. 362-368, 2004.
62 N. Sulaiman, Z. A. Obaid, M. Marhaban and M. Hamidon , "Design and Implementation of FPGA-Based Systems-A Review," Australian Journal of Basic and Applied Sciences, No. 4,vol. 3, pp. 3575-3596, 2009.
63 X. Shao and D. Sun, "Development of an FPGA-based motion control ASIC for robotic manipulators," IEEE Conference , 2006, pp. 8221-8225.
64 Y. S. Kung, K. Tseng, C. Chen, H. Sze and A. Wang, "FPGA-implementation of inverse kinematics and servo controller for robot manipulator," Proc. IEEE Int. on Robotics and Biomimetics, pp. 1163–1168, 2006.
65 X. Shao, D. Sun and J. K. Mills, "A new motion control hardware architecture with FPGAbased IC design for robotic manipulators," IEEE Conference, 2006, pp. 3520-3525.
66 Y. S. Kung, C. S. Chen and G. S. Shu, "Design and Implementation of a Servo System for Robotic Manipulator," CACS, 2005.
67 U. D. Meshram and R. Harkare, "FPGA Based Five Axis Robot Arm Controller," IEEE Conference, 2005, pp. 3520-3525.
68 U. Meshram, P. Bande, P. Dwaramwar and R. Harkare, "Robot arm controller using FPGA,"IEEE Conference, 2009, pp. 8-11.
69 Y. S. Kung and G. S. Shu, "Development of a FPGA-based motion control IC for robot arm,"IEEE Conference, 2006, pp. 1397-1402.
70 Z. A. Obaid, N. Sulaiman and M. Hamidon, "Developed Method of FPGA-based Fuzzy Logic Controller Design with the Aid of Conventional PID Algorithm," Australian Journal of Basic and Applied Sciences, No. 3, vol. 3, pp. 2724-2740, 2009.
71 S. T. Karris, Digital circuit analysis and design with Simulink modeling and introduction to CPLDs and FPGAs: Orchard Pubns, 2007.
72 K. D. Rogers, "Acceleration and implementation of a DSP phase-based frequency estimation algorithm: MATLAB/SIMULINK to FPGA via XILINX system generator," Citeseer,2004.
73 F. J. Lin, D. H. Wang and P. K. Huang, "FPGA-based fuzzy sliding-mode control for a linear induction motor drive," IEEE journal of electrical power application, No. 5, Vol. 152, 2005,pp. 1137-1148.
74 R. R. Ramos, D. Biel, E. Fossas and F. Guinjoan, "A fixed-frequency quasi-sliding control algorithm: application to power inverters design by means of FPGA implementation," Power Electronics, IEEE Transactions on, No. 1, vol. 18, pp. 344-355, 2003.
75 Xiaosong. Lu, "An investigation of adaptive fuzzy sliding mode control for robot manipulator,"Carleton university Ottawa,2007.
76 S. Lentijo, S. Pytel, A. Monti, J. Hudgins, E. Santi and G. Simin, "FPGA based sliding mode control for high frequency power converters," IEEE Conference, 2004, pp. 3588-3592.
77 B. S. R. Armstrong, "Dynamics for robot control: friction modeling and ensuring excitation during parameter identification," 1988.
78 C. L. Clover, "Control system design for robots used in simulating dynamic force and moment interaction in virtual reality applications," 1996.
79 K. R. Horspool, Cartesian-space Adaptive Control for Dual-arm Force Control Using Industrial Robots: University of New Mexico, 2003.
80 B. Armstrong, O. Khatib and J. Burdick, "The explicit dynamic model and inertial parameters of the PUMA 560 arm," IEEE Conference, 2002, pp. 510-518.
81 P. I. Corke and B. Armstrong-Helouvry, "A search for consensus among model parameters reported for the PUMA 560 robot," IEEE Conference, 2002, pp. 1608-1613.
82 Farzin Piltan, N. Sulaiman, M. H. Marhaban, Adel Nowzary, Mostafa Tohidian,” “Design of FPGA based sliding mode controller for robot manipulator,” International Journal of Robotic and Automation, 2 (3): 183-204, 2011.
83 I. Eksin, M. Guzelkaya and S. Tokat, "Sliding surface slope adjustment in fuzzy sliding mode controller," Mediterranean Conference, 2002, pp. 160-168.
84 Farzin Piltan, H. Rezaie, B. Boroomand, Arman Jahed,” Design robust back stepping online tuning feedback linearization control applied to IC engine,” International Journal of Advance Science and Technology, 42: 183-204, 2012.
85 Farzin Piltan, I. Nazari, S. Siamak, P. Ferdosali ,”Methodology of FPGA-based mathematical error-based tuning sliding mode controller” International Journal of Control and Automation,5(1): 89-110, 2012.
86 Farzin Piltan, M. A. Dialame, A. Zare, A. Badri ,”Design Novel Lookup table changed Auto Tuning FSMC: Applied to Robot Manipulator” International Journal of Engineering, 6(1):25-40, 2012.
87 Farzin Piltan, B. Boroomand, A. Jahed, H. Rezaie ,”Methodology of Mathematical ErrorBased Tuning Sliding Mode Controller” International Journal of Engineering, 6(2): 96-112,2012.
88 Farzin Piltan, F. Aghayari, M. R. Rashidian, M. Shamsodini, ”A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator” International Journal of Robotics and Automation, 3(1): 45-58, 2012.
89 Farzin Piltan, M. Keshavarz, A. Badri, A. Zargari , ”Design novel nonlinear controller applied to robot manipulator: design new feedback linearization fuzzy controller with minimum rule base tuning method” International Journal of Robotics and Automation,3(1): 1-18, 2012.
90 Samira Soltani & Farzin Piltan, “Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain”. World Applied Science Journal,14 (9): 1306-1312, 2011.
91 Piltan, F., et al. "Design sliding mode controller for robot manipulator with artificial tunable gain". Canaidian Journal of pure and applied science, 5 (2), 1573-1579, 2011.
92 Farzin Piltan, A. Hosainpour, E. Mazlomian, M.Shamsodini, M.H Yarmahmoudi. ”Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach”International Journal of Robotics and Automation, 3(3): 2012.
93 Farzin Piltan , M.H. Yarmahmoudi, M. Shamsodini, E.Mazlomian, A.Hosainpour. ” PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses” International Journal of Robotics and Automation, 3(3): 2012.
94 Farzin Piltan, S. Emamzadeh, Z. Hivand, F. Shahriyari & Mina Mirazaei . ” PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses” International Journal of Robotics and Automation, 3(3): 2012.
95 Farzin Piltan, J. Meigolinedjad, S. Mehrara, S. Rahmdel. ” Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology”International Journal of Robotics and Automation, 3(3): 2012.
96 Farzin Piltan, S. Rahmdel, S. Mehrara, R. Bayat.” Sliding Mode Methodology Vs. Computed Torque Methodology Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control Courses” International Journal of Engineering, 3(3): 2012.
97 Farzin Piltan, M. Mirzaie, F. Shahriyari, Iman nazari & S. Emamzadeh.” Design Baseline Computed Torque Controller” International Journal of Engineering, 3(3): 2012.
Dr. Farzin Piltan
SSP.CO - Iran
SSP.ROBOTIC@YAHOO.COM
Mr. Reza Bayat
SSP.CO - Iran
Mr. Farid Aghayari
SSP.CO - Iran
Mr. Bamdad Boroomand
SSP.CO - Iran