Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Secure Linear Transformation Based Cryptosystem using Dynamic Byte Substitution
Adi Narayana Reddy K, Vishnuvardhan B
Pages - 24 - 32     |    Revised - 10-05-2014     |    Published - 01-06-2014
Volume - 8   Issue - 3    |    Publication Date - June 2014  Table of Contents
Dynamic Byte Substitution, Hill Cipher, Pseudo-random Numbers, Sub Key Groups.
Many classical cryptosystems are developed based on simple substitution. Hybrid cryptosystem using byte substitution and variable length sub key groups is a simple nonlinear algorithm but the cryptanalyst can find the length of each sub key group because the byte substitution is static and if the modulo prime number is small then byte substitution is limited to first few rows of S-box. In this paper an attempt is made to introduce the nonlinearity to the linear transformation based cryptosystem using dynamic byte substitution over GF (28). The secret value is added to the index value to shift the substitution to a new secret location dynamically. This adds extra security in addition to non-linearity, confusion and diffusion. The performance evaluation of the method is also studied and presented.
CITED BY (0)  
1 Google Scholar
2 CiteSeerX
3 refSeek
4 Scribd
5 SlideShare
6 PdfSR
1 Advanced Encryption Standard (AES) 2001. Federal Information Processing Standards(FIPS), publication November 26.
2 Abidin, A.F.A. and Chuan, O.Y. and Kamel Ariffin, Muhammad Rezal 2011. A novel enhancement technique of the hill cipher for effective cryptographic purposes. Journal of Computer Science, 7 (5). pp. 785-789. ISSN 1549-3636
3 Ahmed, Y.M. and A.G. Chefranov, 2009. Hill cipher modification based on eigenvalues hcmEE.Proceedings of the 2th International Conference on Security of Information and Networks, Oct. 6-10, ACM Press, New York, USA., pp: 164-167. DOI:10.1145/1626195.1626237
4 Ahmed, Y.M. and Alexander Chefranov, 2011. Hill cipher modification based on pseudorandom eigen values HCM-PRE. Applied Mathematics and Information Sciences (SCI-E)8(2), pp. 505-516.
5 Ahmed, Y.M. and Alexander Chefranov. Hill cipher modification based generalized permutation matrix SHC-GPM, Information Science letter, 1, pp. 91-102
6 Dunkelman, O. and Keller, N. 2007. A New Criterion for Nonlinearity of Block Ciphers, IEEE Transactions on Information Theory, Vol. 53, No. 11, 3944-3957. DOI:10.1109/TIT.2007.907341
7 Hill, L.S., 1929. Cryptography in an Algebraic Alphabet. Am. Math. Monthly, 36: 306-312.http://www.jstor.org/discover/10.2307/2298294?uid=3738832&uid=2129&uid=2&uid=70&uid=4&sid=21102878411191
8 Ismail, I.A., M. Amin and H. Diab, 2006. How to repair the hill cipher. J. Zhej. Univ. Sci. A., 7:2022-2030. DOI: 10.1631/jzus.2006.A2022.
9 Kaipa, A.N.R., V.V. Bulusu, R.R. Koduru and D.P. Kavati, 2014. A Hybrid Cryptosystem using Variable Length Sub Key Groups and Byte Substitution. J. Comput. Sci., 10:251-254
10 Keliher, L. and A.Z. Delaney, 2013. Cryptanalysis of the toorani-falahati hill ciphers. Mount Allison University. http://eprint.iacr.org/2013/592.pdf
11 Lin, C.H., C.Y. Lee and C.Y. Lee, 2004. Comments on Saeednia’s improved scheme for the hill cipher. J. Chin. Instit. Eng., 27: 743-746. DOI: 10.1080/02533839.2004.9670922
12 Overbey, J., W. Traves and J. Wojdylo, 2005. On the keyspace of the hill cipher. Cryptologia,29: 59-72. DOI: 10.1080/0161-110591893771
13 Rangel-Romeror, Y., R. Vega-Garcia, A. Menchaca-Mendez, D. Acoltzi-Cervantes and L.Martinez-Ramos et al., 2008. Comments on “How to repair the Hill cipher”. J. Zhej. Univ. Sci.A., 9: 211-214. DOI: 10.1631/jzus.A072143
14 Reddy, K.A., B. Vishnuvardhan, Madhuviswanath and A.V.N. Krishna, 2012. A modified hill cipher based on circulant matrices. Proceedings of the 2nd International Conference on Computer, Communication, Control and Information Technology, Feb. 25-26, Elsevier Ltd.,pp: 114-118. DOI: 10.1016/j.protcy.2012.05.016
15 Reddy, K. A., B. Vishnuvardhan, Durgaprasad, 2012. Generalized Affine Transformation Based on Circulant Matrices. Internatonal Journal of Distributed and Parallel Systems, Vol. 3,No. 5, pp. 159-166
16 Saeednia, S., 2000. How to make the hill cipher secure. Cryptologia, 24: 353-360. DOI:10.1080/01611190008984253
17 Stallings, William. Cryptography and Network Security, Third edition, PHI/Pearson.
18 Forouzan, B.A. and Mukhopadhyay, D. Cryptography and Network Security, Second edition,TMH.
19 Toorani, M. and A. Falahati, 2009. A secure variant of the hill cipher. Proceedings of the IEEE Symposium on Computers and Communications, Jul. 5-8, IEEE Xplore Press, Sousse, pp:313-316. DOI: 10.1109/ISCC.2009.5202241
20 Toorani, M. and A. Falahati, 2011. A secure cryptosystem based on affine transformation.Sec. Commun. Netw., 4: 207-215. DOI: 10.1002/sec.137
21 Yeh, Y.S., T.C. Wu, C.C. Chang and. W.C. Yang, 1991. A new cryptosystem using matrix transformation. Proceedings of the 25th IEEE International Carnahan Conference on Security Technology, Oct. 1-3, IEEE Xplore Press, Taipei, pp: 131-138. DOI:10.1109/CCST.1991.202204.
Mr. Adi Narayana Reddy K
JNTU Hyderabad - India
Mr. Vishnuvardhan B
Dept. of IT & JNTUH College of Engineering Nachupally, Kondagattu, Karimnagar, India - India