Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(197.36KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
Marina Andrade, Manuel Alberto M. Ferreira
Pages - 65 - 74     |    Revised - 30-09-2009     |    Published - 21-10-2009
Volume - 3   Issue - 4    |    Publication Date - August 2009  Table of Contents
MORE INFORMATION
KEYWORDS
Bayesian networks, DNA profiles, identification problems
ABSTRACT
Forensic identification problems are examples in which the study of DNA profiles is a common approach. To deal with these problems an introduction and explanation of various concepts is needed. Here we present some problems and develop their treatment putting the focus in the use of object-oriented Bayesian networks. The use of DNA databases, which began in 1995 in England, has created new challenges about its use. In Portugal the legislation for the construction of a genetic database was defined in 2008. With this it is important to determine how to use it in an appropriate way. For a crime that has been committed, forensic laboratories identify genetic characteristics in order to connect one or more individuals to it. Apart the laboratories results it is a matter of great importance to quantify the information obtained, i.e., to know how to evaluate and interpret the results obtained providing support to the judicial system. Other forensic identification problems are body identification; whether the identification of a body (or more than one) found, together with the information of missing persons belonging to one or more known families, for which there may be information of family members who claimed the disappearance. In this work intend to discuss how to use the database; the hypotheses of interest and the database use to determine the likelihood ratios, i.e., how to evaluate the evidence for different situations. Keywords: Bayesian networks, DNA profiles, identification problems.
CITED BY (12)  
1 Chezian, R. M. Big Data Management through polymer Data to accentuate Progression based algorithm.
2 Vijay Arputharaj, J., & Chezian, R. M. (2013). Data Mining through DNA Database to Enhance Gene Bases Algorithm.
3 Andrade, M., & Ferreira, M. A. M. (2012). Civil and criminal identification with Bayesian networks.
4 Andrade, M., & Ferreira, M. A. M. (2012). THE PROBLEM OF CIVIL AND CRIMINAL IDENTIFICATION-BAYESIAN NETWORKS APPROACH. Technical editor A. Xankishiyev, 103.
5 Andrade, M., & Ferreira, M. A. M. (2012). Crime scene investigation with Bayesian probabilistic expert systems. Applied Mathematics, 2(2), 7-10.
6 Tenorio, Á. F., Gaballah, M. S., & Ferreira, M. A. M. (2012). Technical editor A. Xankishiyev.
7 Andrade, M., Ferreira, M. A. M., & UNIDE-IUL, L. P. (2011). FORENSIC IDENTIFICATION WITH BAYES’LAW. Ángel F. Tenorio, Prof. Dr., 206.
8 Gaballah, M. S., Ferreira, M. A. M., & Axinte, E. (2011). Ángel F. Tenorio, Prof. Dr.
9 Andrade, M., & Ferreira, M. A. M. (2011). Paternities Search in a very uncommon situation through object-oriented Bayesian networks. Journal of Mathematics and Technology.
10 Andrade, M., & Ferreira, M. A. M. (2011). Crime scene investigation with probabilistic expert systems. International Journal of Academic Research, 3(3 Part I), 7-15.
11 Andrade, M., & Ferreira, M. A. M. (2010). Solving civil identification cases with DNA profiles databases using Bayesian networks. Journal of Mathematics and Technology, 1(2), 37-40.
12 Andrade, M., & Ferreira, M. A. M. (2010). Civil identification problems with Bayesian networks using official DNA databases. Aplimat-Journal of Applied Mathematics, 3(3), 155-162.
1 Google Scholar
2 ScientificCommons
3 Academic Index
4 CiteSeerX
5 refSeek
6 iSEEK
7 Socol@r
8 ResearchGATE
9 Bielefeld Academic Search Engine (BASE)
10 Scribd
11 WorldCat
12 slideshare
13 PDFCAST
14 PdfSR
1 A. P. Dawid, J. Mortera, V. L. Pascali, D. W. Van Boxel. “Probabilistic expert systems for forensic inference from genetic markers”. Scandinavian Journal of Statistics, 29:577-595, 2002
2 B. P. Battula, K. Rani , S. Prasad , T. Sudha. ”Techniques in Computer Forensics: A Recovery Perspective”. International Journal of Security, Volume 3, Issue 2:27-35, 2009
3 2. David J. Balding. ”The DNA database controversy”. Biometrics, 58(1):241-244, 2002
4 3. F. Corte-Real. “Forensic DNA databases”. Forensic Science International, 146s:s143-s144, 2004
5 4. I. Evett and B. S. Weir. “Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists”, Sinauer Associates, Inc. (1998)
6 5. M. Andrade, M. A. M. Ferreira. “Bayesian networks in forensic identification problems”. Journal of Applied Mathematics. Volume 2, number 3, 13-30, 2009
7 6. M. Andrade, M. A. M. Ferreira, J. A. Filipe. “Evidence evaluation in DNA mixture traces”. Journal of Mathematics and Allied Fields (Scientific Journals International-Published online). Volume 2, issue 2, 2008
8 7. M. Andrade, M. A. M. Ferreira, J. A. Filipe., M. Coelho. “Paternity dispute: is it important to be conservative?”. Aplimat – Journal of Applied Mathematics. Volume 1, number 2, 2008
9 8. M. Guillén, M. V. Lareu, C. Pestoni, A. Salas and A. Carrecedo. “Ethical-legal problems of DNA databases in criminal investigation”. Journal of Medical Ethics, 26:266-271, 2000
10 9. P. Martin. “National DNA databases – practice and practability. A forum for discussion”. In International Congress Series 1261, 1-8
11 10. R. E. Neapolitan. “Learning Bayesian networks” , Pearson Prentice Hall, (2004)
12 11. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter. “Probabilistic Expert Systems”, Springer, New York, (1999).
13 G. Skinner. “Multi-Dimensional Privacy Protection for Digital Collaborations”. International
14 M. N. Anyanwu, S. Shiva. “Comparative Analysis of Serial Decision Tree Classification Algorithms”. International Journal of Computer Science and Security,Volume 3, Issue 3:230-240, 2009
Dr. Marina Andrade
ISCTE- IUL - Portugal
marina.andrade@iscte.pt
Professor Manuel Alberto M. Ferreira
ISCTE- IUL - Portugal