Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.


Top researchers from over 74 countries worldwide have trusted us because of quality publications.

United States of America
United Kingdom
Saudi Arabia
A New Approach for Speech Enhancement Based On Eigenvalue Spectral Subtraction
Jamal Ghasemi, Karami mollaei
Pages - 34 - 41     |    Revised - 30-09-2009     |    Published - 21-10-2009
Volume - 3   Issue - 4    |    Publication Date - August 2009  Table of Contents
Eigenvalues, singular values decomposition, Spectral Subtraction, Speech enhancement
In this paper, a phase space reconstruction-based method is proposed for speech enhancement. The method embeds the noisy signal into a high dimensional reconstructed phase space and uses Spectral Subtraction idea. The advantages of the proposed method are fast performance, high SNR and good MOS. In order to evaluate the proposed method, ten signals of TIMIT database mixed with the white additive Gaussian noise and then the method was implemented. The efficiency of the proposed method was evaluated by using qualitative and quantitative criteria.
CITED BY (21)  
1 Acharya, P., & Agrawal, S. (2015). International journal of engineering sciences & management. Int. J. of Engg. Sci. & Mgmt.(IJESM), 5(2), 131-135.
2 Anoop, V., Rao, P. V., & Nidhin, M. (2015, April). Performance analysis of speech enhancement methods using adaptive algorithms and optimization techniques. In Communications and Signal Processing (ICCSP), 2015 International Conference on (pp. 1306-1310). IEEE.
3 Selvi, R. S., & Suresh, G. R. Hybridization of spectral filtering with particle swarm optimization for speech signal enhancement. International Journal of Speech Technology, 1-13.
4 Kaur, H., & Talwar, R. (2014). Optimal Selection of Wavelet and Threshold Using Cuckoo Search for Noise Suppression in Speech Signals. International Review on Computers and Software (IRECOS), 9(9), 1496-1506.
5 Acharya, P.Speech enhancement using unbiased normalized adaptive filtering technique.
6 SIGNAL, A. N. Global Journal of Advanced Engineering Technologies and Sciences.
7 Parashar, A., & Ghosh, P. K. (2013). Speech Enhancement and Denoising Using Digital Filters. International Journal of Engineering Science and Technology, 5(5), 1094.
8 Anoop, V., & Rao, P. V. (2013). Speech Signal Quality Improvement Using Cuckoo Search Algorithm. International Journal of Engineering Innovations and Research, 2(6), 519.
9 Ghasemi, J., Ghaderi, R., Mollaei, M. K., & Hojjatoleslami, S. A. (2013). A novel fuzzy Dempster–Shafer inference system for brain MRI segmentation. Information Sciences, 223, 205-220.
10 Ghasemi, J., Mollaei, M. R. K., Ghaderi, R., & Hojjatoleslami, A. (2013). Multi-Dimensional Fuzzy C-Mean Considering Spatial Information for Brain MRI Segmentation. Majlesi Journal of Electrical Engineering, 8(1), 37-44.
11 Ghasemi, J., Mollaei, M. R. K., Ghaderi, R., & Hojjatoleslami, A. (2012). Brain tissue segmentation based on spatial information fusion by Dempster-Shafer theory. Journal of Zhejiang University SCIENCE C, 13(7), 520-533.
12 Mohedden, S. K., Zia-Ur-Rahman, M., Krishna, K. M., & Rao, B. R. M. Battle Field Speech Enhancement using an Efficient Unbiased Adaptive Filtering Technique.
13 Ghasemi, J., Mollaei, M. R. K., Ghaderi, R., & Hojjatoleslami, A. (2011, November). Brain Tissue Segmentation by FCM and Dempster-Shafer Theory. In Machine Vision and Image Processing (MVIP), 2011 7th Iranian (pp. 1-5). IEEE.
14 Prameela, K., Kumar, M. A., Zia-Ur-Rahman, M., & Rao, B. R. M. (2011). Non Stationary Noise Removal from Speech Signals using Variable Step Size Strategy. International Journal of Computer Science & Communication Networks, 1(1).
15 Rahman, M. Z. U., Mohedden, S. K., Rao, B. R. M., Reddy, Y. J., & Karthik, G. V. S. (2011). Filtering Non-Stationary Noise in Speech Signals using Computationally Efficient Unbiased and Normalized Algorithm. International Journal on Computer Science and Engineering, ISSN, 0975-3397.
16 Karthik, G. V. S., Kumar, M. A., & Rahman, M. Z. U. (2011). Speech Enhancement Using Gradient Based Variable Step Size Adaptive Filtering Techniques. International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004), 2(1), 168-177.
17 Ghasemi, J., Mollaei, M. R. K., Ghaderi, R., & Hojjatoleslami, A. (2011, July). Separation of brain tissues in MRI based on multi-dimensional FCM and spatial information. In Fuzzy Systems and Knowledge Discovery (FSKD), 2011 Eighth International Conference on (Vol. 1, pp. 247-251). IEEE.
18 Murthy, A. S. N., & Rani, D. E. (2011). Speech Enhancement by Cascaded Spectral Subtraction. Digital Signal Processing, 3(5), 188-191.
19 Afzalian, A., Mollaei, M. R. K., & Ghasemi, J. A Combined Voice Activity Detector Based On Singular Value Decomposition and Fourier Transform. Signal Processing: An International Journal (SPIJ), 4(1), 54.
20 Farsi, H. (2010). Improvement of minimum tracking in minimum statistics noise estimation method. Signal Processing: An International Journal (SPIJ), 4(1), 17.
21 Ghasemi, J., Afzalian, A., & Mollaei, M. K. (2010). A Combined Voice Activity Detector Based On Singular Value Decomposition and Fourier Transform. Signal Processing, 4(1), 54-61.
1 Google Scholar 
2 ScientificCommons 
3 Academic Index 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 ResearchGATE 
9 Bielefeld Academic Search Engine (BASE) 
10 Scribd 
11 WorldCat 
12 SlideShare 
14 PdfSR 
1 S.F. Boll, “Suppression of acoustic noise in speech using spectral subtraction”. IEEE Transactions Acoustics Speech Signal Process. 27, 113:120, 1979.
2 Y. Ephraim, D. Malah, “Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator”. IEEE Transactions Acoust. Speech Signal Process. ASSP. 32 (6), 1109:1121. 1984.
3 D.L. Donoho, “Denoising by soft thresholding”. IEEE Transactions Information Theory, 41(3), 613:627, 1995.
4 Y. Ghanbari, M. R. Karami-M, “A new approach for speech enhancement based on the adaptive thresholding of the wavelet packets”, Speech Communication 48, 927:940, 2006
5 S. Sayeed, N. S. Kamel and R. Besar. “A Sensor-Based Approach for Dynamic Signature Verification using Data Glove”. Signal Processing: An International Journal (SPIJ),2(1)1:10,2008
6 Guo, D., Zhu, W., Gao, Z., Zhang, J., 2000, A study of wavelet thresholding denoising. Paper presented at the International Conference on Signal Processing, Beijing, PR China.
7 Ghanbari Y., Karami-M M. R., 2006, A new approach for speech enhancement based on the adaptive thresholding of the wavelet packets, Speech Communication 48 (2006) 927 940
8 Gustafsson, H., Nordholm, S. E., & Claesson, I., 2001, Spectral Subtraction Using Reduced Delay Convolution and Adaptive Averaging. IEEE Transactions on Speech and Audio Processing, 9(8), pp. 799-807.
9 Martin, R. (1994). Spectral Subtraction Based on Minimum Statistics. Paper presented at the Europe Signal Processing Conference, Edinburgh, Scotland, pp. 1182-1185.
10 Tsoukalas, D. E., Mourjopoulos, J. N., & Kokkinakis, G. (1997). Speech Enhancement Based on Audible Noise Suppression. IEEE Transactions on Speech and Audio Processing, 5(6), pp. 497 514.
11 Michael T. Johnson , Andrew C. Lindgren, Richard J. Povinelli, Xiaolong Yuan , 2003, Performance of Nonlinear Speech Enhancement Using Phase Space Recognition Struction, ICASSP 2003
12 Banbrook M., S. McLaughlin, and 1. Mann, 1999, Speech characterization and synthesis by nonlinear methods, IEEE Transactions on Speech and Audio Processing, vol. 7, pp. I -17.
13 Kumar A. and S. K. Mullick, 1996, Nonlinear Dynamical Analysis of Speech, Journal o/the Acoustical society of America, vol. 100, pp. 615-629.
14 Abarbanel H. D. I. 1996, Analysis of Observed Chaotic Data (Springer, New York, 1996).
15 Kantz H. and T. Schreiber, 1997, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, England,1997).
16 Takens F., 1981, In Dynamical Systems and Turbulence, edited by D. A. Rand and L.-S. Young, Lecture Notes, in Mathematics Vol. 898 (Springer-Verlag, New York, 1981), P. 366
17 Hegger R., H. Kantz, and L. Matassini, 2000, Denoising Human Speech Signals Using Chaoslike Features, Physical Review Letters (3 APRIL 2000), Vol. 84, Num. 14, PP. 3197-31200
18 H. Sameti, H. Sheichzadeh, Li Deng, R. L. Brennan, “HMM Based Strategies for Enhancement of Speech Signals Embedded in Nonstationary Noise”, IEEE Transactions on Speech and Audio processing, vol. 6, No. 5, September 1998.
Dr. Jamal Ghasemi
- Iran
Mr. Karami mollaei
- Iran