Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Multi-Target Classification Using Acoustic Signatures in Wireless Sensor Networks: A survey
Ahmad, Ala Al-Fuqaha
Pages - 175 - 200     |    Revised - 30-08-2010     |    Published - 30-10-2010
Volume - 4   Issue - 4    |    Publication Date - October 2010  Table of Contents
Signal classification, Feature extraction, Distributed sensors, Sensor fusion.
Classification of ground vehicles based on acoustic signals using wireless sensor networks is a crucial task in many applications such as battlefield surveillance, border monitoring, and traffic control. Different signal processing algorithms and techniques that are used in classification of ground moving vehicles in wireless sensor networks are surveyed in this paper. Feature extraction techniques and classifiers are discussed for single and multiple vehicles based on acoustic signals. This paper divides the corresponding literature into three main areas: feature extraction, classification techniques, and collaboration and information fusion techniques. The open research issues in these areas are also pointed out in this paper. This paper evaluates five different classifiers using two different feature extraction methods. The first one is based on the spectrum analysis and the other one is based on wavelet packet transform.
CITED BY (5)  
1 Damarla, T. (2015). Battlefield Acoustics. Springer.
2 Ricard, B. (2015). U.S. Patent No. 9,113,044. Washington, DC: U.S. Patent and Trademark Office.
3 Sun, H., & Zhu, Q. (2013, December). Blind speech signal separation in wireless sensor networks. In Image and Signal Processing (CISP), 2013 6th International Congress on (Vol. 3, pp. 1422-1426). IEEE.
4 Jousselme, A. L., & Maupin, P. (2012). An evidential pattern matching approach for vehicle identification. In Belief Functions: Theory and Applications (pp. 45-52). Springer Berlin Heidelberg.
5 Aljaafreh, A. (2011). Butter Churning Process Automating Based on Acoustic Signals.
1 Google Scholar
2 Academic Index
3 CiteSeerX
4 refSeek
6 Socol@r
7 Scribd
8 SlideShare
10 PdfSR
1 K. Ro¨ mer, F. Mattern. “The design space of wireless sensor networks”. IEEE Wireless Communications, 11(6)54–61, 2004
2 T. Arampatzis, J. Lygeros, S. Manesis. “A survey of applications of wireless sensors and wireless sensor networks”. In Intelligent Control, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation, 2005
3 R. Tan, G. Xing, J. Wang, and H. C. So. “Exploiting reactive collaborative target detection in wireless sensor networks”. IEEE Transactions on Mobile Computing, 99(1): 5555.
4 L. B. Saad and B. Tourancheau. “Multiple mobile sinks positioning in wireless sensor networks for buildings”. In Sensor Technologies and Applications, 2009. SENSORCOMM ’09. Third International Conference, 2009
5 R. Zurawski. “Keynote: Wireless sensor network in industrial automation”. In Embedded Software and Systems, ICESS ’09. International Conference, 2009
6 I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. “Wireless sensor networks: a survey”. Computer Networks, 38(4):393–422, 2002. [Online]. Available at: http://www.sciencedirect.com/science/article/B6VRG-44W46D4- 1/2/f18cba34a1b0407e24e97fa7918cdfdc
7 P. Gajbhiye and A. Mahajan. “A survey of architecture and node deployment in wireless sensor network”. In Applications of Digital Information and Web Technologies, ICADIW, First International Conference, 2008
8 T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh. “Energy-efficient surveillance system using wireless sensor networks”. In MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems, applications, and services. New York, NY, USA: ACM, 2004
9 T. Canli, M. Terwilliger, A. Gupta, and A. Khokhar. “Power - time optimal algorithm for computing fft over sensor networks”. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems. New York, NY, USA: ACM, 2004
10 C. F. Chiasserini and R. R. Rao. “On the concept of distributed digital signal processing in wireless sensor networks”. In Proceedings of MILCOM, 2002
11 D. Estrin, L. Girod, G. Pottie, M. Srivastava “Instrumenting the world with wireless sensor networks”. In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 4: 2033–6, 2001
12 G. P. Mazarakis and J. N. Avaritsiotis. “Vehicle classification in sensor networks using time-domain signal processing and neural networks”. Microprocess. Microsyst., 31(6) 381– 392, 2007
13 H. Choe, R. Karlsen, G. Gerhart, and T. Meitzler. “Wavelet-based ground vehicle recognition using acoustic signals”. In Proceedings of the SPIE - The International Society for Optical Engineering, Conference Paper, Wavelet Applications III, Orlando, FL, USA, 2762: 434–45, SPIE, 1996
14 A. Khandoker, D. Lai, R. Begg, M. Palaniswami. “Wavelet-based feature extraction for support vector machines for screening balance impairments in the elderly”. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 15(4)587–597, 2007
15 M. C. Wellman, N. Srour and D. B. Hillis. “Feature extraction and fusion of acoustic and seismic sensors for target identification”. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, G. Yonas, Ed., 3081:139–145, 1997
16 G. Succi, T. Pedersen, R. Gampert and G. Prado. “Acoustic target tracking and target identification-recent results”. In Proceedings of the SPIE - The International Society for Optical Engineering, 3713:10–21, 1999
17 M. E. Hohil, J. R. Heberley, J. Chang, A. Rotolo. “Vehicle counting and classification algorithms for unattended ground sensors”. E. M. Carapezza, Ed., SPIE, 5090(1):99–110, 2003. Available: http://link.aip.org/link/?PSI/5090/99/1.
18 M. E. Munich. “Bayesian subspace methods for acoustic signature recognition of vehicles”. In Proc.EUSIPCO, 2004
19 X. Wang H. Qi. “Acoustic target classification using distributed sensor arrays”. In Proc. IEEE ICASSP, 4:4186–4189, 2002
20 H. Wu, M. Siegel, P. Khosla. “Vehicle sound signature recognition by frequency vector principal component analysis”. Instrumentation and Measurement, IEEE Transactions on, 48(5):1005–1009, 1999
21 D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed. “Detection, classification and tracking of targets in distributed sensor networks”. In IEEE Signal Processing Magazine, 2002
22 H. Maciejewski, J. Mazurkiewicz, K. Skowron, and T. Walkowiak. “Neural networks for vehicle recognition”. In Proc. 6th Conference on Microelectroncs for Neural Networks, Evolutionary and Fuzzy System, 1997
23 W. J. Roberts, H. W. Sabrin, and Y. Ephraim. “Ground vehicle classification using hidden markov models”. In Atlantic coast technologies Inc., Silver Spring MD, 2001
24 A. Averbuch, E. Hulata, V. Zheludev, and I. Kozlov. “A wavelet packet algorithm for classification and detection of moving vehicles”. Multidimensional Syst. Signal Process, 12(1):9–31, 2001
25 J. E. Lopez, H. H. Chen, and J. Saulnier. “Target identification using wavelet-based feature extraction and neural network classifiers”. in CYTEL SYSTEMS INC HUDSON MA, 1999
26 K. B. Eom. “Analysis of acoustic signatures from moving vehicles using time-varying autoregressive models”. Multidimensional Syst. Signal Process, 10(4):357–378, 1999
27 L. Liu. “Ground vehicle acoustic signal processing based on biological hearing models”. Master’s thesis, University of Maryland, 1999
28 N. B. Thammakhoune and S. W. Lang. “Long range acoustic classification”. Sanders a Lockheed Martin Company, Tech. Rep., 1999
29 S. Somkiat “Neural fuzzy techniques in vehicle acoustic signal classification”. Ph.D.dissertation, chair-Vanlandingham, Hugh F. 1997
30 A. Y. Nooralahiyan, H. R. Kirby, D. McKeown. “Vehicle classification by acoustic signature”. Mathematical and computer modeling, 27:9 –11, 1998
31 M. Baljeet, N. Ioanis, H. Janelle. “Distributed classification of acoustic targets in wireless audio-sensor networks”. Comput. Netw., 52(13):2582–2593, 2008
32 L. Chun-Ting, H. Hong, F. Tao, L. De-Ren, S. Xiao. “Classification fusion in wireless sensor networks”. ACTA AUTOMATICA SINICA, 32(6):948–955, 2006
33 S. S. Yang, Y. G. Kim1, H. Choi. “Vehicle identification using discrete spectrums in wireless sensor networks”. Journal Of Networks, 3(4):51–63, 2008
34 B. Malhotra, I. Nikolaidis, and M. Nascimento. “Distributed and efficient classifiers for wireless audio-sensor networks”. In Networked Sensing Systems, 2008. INSS 2008. 5th International Conference on, 2008
35 M. F. Duarte, Y. H. Hu. “Vehicle classification in distributed sensor networks”. Journal of Parallel and Distributed Computing, 64(7):826–838, 2004, computing and Communication in Distributed Sensor Networks. Available at: http://www.sciencedirect.com/science/article/B6WKJ-4CXD0JJ- 1/2/64f671263463155e2afd7bf778c3a7dd
36 B. Guo, M. Nixon, and T. Damarla. “Acoustic information fusion for ground vehicle classification”. In Information Fusion, 2008 11th International Conference, 2008
37 R. D. T., P. Tien, and L. Douglas. “An algorithm for classifying multiple targets using acoustic signatures”, 2004
38 H. Xiao1, Q. Yuan1, X. Liu1, and Y. Wen. “Advanced Intelligent Computing Theories and Application, with Aspects of Theoretical and Methodological Issue.” Springer Berlin / Heidelberg, 2007
39 A. Amir, Z. V. A., R. Neta, S. Alon “Wavelet-based acoustic detection of moving vehicles”. Multidimensional Syst. Signal Process., 20(1):55–80, 2009
40 H. Qi, X. Tao, and L. H. Tao. “Vehicle classification in wireless sensor networks based on rough neural network”. In ACST’06: Proceedings of the 2nd IASTED international conference on Advances in computer science and technology. Anaheim, CA, USA: ACTA Press, 2006
41 D. Li, K. Wong, Y. H. Hu, and A. Sayeed. “Detection, classification, and tracking of targets”. Signal Processing Magazine, IEEE, 19(2):17–29, 2002
42 Q. Xiao-xuan, J. Jian-wei, H. Xiao-wei and Y. Zhong-hu. “An approach of passive vehicle type recognition by acoustic signal based on svm”. 2009
43 Y. Kim, S. Jeong, D. Kim, T. S. Lo´ pez. “An efficient scheme of target classification and information fusion in wireless sensor networks”. Personal Ubiquitous Comput., 13(7): 499–508, 2009
44 Y. Sun and H. Qi. “Dynamic target classification in wireless sensor networks”. In Pattern Recognition, ICPR ,19th International Conference, 2008
45 W. Duan, M. He, Y. Chang and Yan Feng. “Acoustic objective recognition in wireless sensor networks”. In 2009 4th IEEE Conference on Industrial Electronics and Applications, 2009
46 R. Mgaya, S. Zein-Sabatto, A. Shirkhodaie, and W. Chen. “Vehicle identifications using acoustic sensing”. In SoutheastCon, 2007 Proceedings. IEEE, 2007
47 P. Qiang, W. Jianming, C. Hongbing, L. Na, and L. Haitao. “Improved ds acousticseismic modality fusion for ground-moving target classification in wireless sensor networks”. Pattern Recogn. Lett., 28(16):2419–2426, 2007
48 S. Erb. “Classification of vehicles based on acoustic features”. Master’s thesis, Begutachter: Univ.-Prof. Dipl.-Ing. Dr. Bernhard Rinner, 2007
49 A. Aljaafreh and L. Dong. “An evaluation of feature extraction methods for vehicle classification based on acoustic signals”. In Networking, Sensing and Control (ICNSC), 2010 International Conference, 2010
50 D. Lake. “Harmonic phase coupling for battlefield acoustic target identification”. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, 4:2049–2052, 1998
51 Y. Kaia, H. Qia, W. Jianminga, L. Haitao. “Multiple vehicle signals separation based on particle filtering in wireless sensor network”. Journal of Systems Engineering and Electronics, 19(3):440–446, 2008
52 M. E. Munich. “Bayesian subspace methods for acoustic signature recognition of vehicles”. In 12th European Signal Processing Conf), 2004
53 H.-l. Wang, W. Yang, W.-d. Zhang, and Y. Jun. “Feature extraction of acoustic signal based on wavelet analysis”. In ICESSSYMPOSIA ’08: Proceedings of the 2008 International Conference on Embedded Software and Systems Symposia. Washington, DC, USA: IEEE Computer Society, 2008
54 X. Shao, L. Sun. “An application of the continuous wavelet transform to resolution of multicomponent overlapping analytical signals”. Analytical Letters, 34(2):267–280, 2001 [Online]. Available at: http://dx.doi.org/10.1081/AL-100001578
55 H. C. Choe. “Signature detection, recognition, and classification using wavelets in signal and image processing”. Ph.D. dissertation, Texas A&M University, Department of Electrical Engineering, 1997
56 R. Karlsen, T. Meitzler, G. Gerhart, D. Gorsich, and H. Choe. “Comparative study of wavelet methods for ground vehicle signature analysis”. In Proceedings of the SPIE - The International Society for Optical Engineering, 2762: 314–24, 1996
57 Wang, Lipo, Fu, and Xiuju. “Data Mining with Computational Intelligence”. Springer Berlin Heidelberg, 2005
58 M. Wlchli and T. Braun. “Event classification and filtering of false alarms in wireless sensor networks”. Parallel and Distributed Processing with Applications, International Symposium on, 0:757–764, 2008
59 D. Janakiram, V. A. M. Reddy and A. P. Kumar. “Outlier detection in wireless sensor networks using bayesian belief networks”. In Communication System Software and Middleware, First International Conference, 2006
60 D. S. Kim, M. A. Azim, and J. S. Park. “Privacy preserving support vector machines in wireless sensor networks”. In ARES ’08: Proceedings of the 2008 Third International Conference on Availability, Reliability and Security Washington, DC, USA: IEEE Computer Society, 2008
61 X. Wang, D.-w. Bi, L. Ding, and S. Wang. “Agent collaborative target localization and classification in wireless sensor networks. ”Sensors, 7(8):1359–1386, 2007. [Online]. Available at: http://www.mdpi.com/1424-8220/7/8/1359
62 D. Tran and T. Nguyen. “Support vector classification strategies for localization in sensor networks”. In Communications and Electronics, 2006. ICCE ’06. First International Conference, 2006
63 L. Yip, K. Comanor, J. C. Chen, R. E. Hudson, K. Yao, and L. Vandenberghe. “Array processing for target doa, localization, and classification based on aml and svm algorithms in sensor networks”. In AML and SVM Algorithms in Sensor Networks, Proc. of the 2nd International Workshop on Information Processing in Sensor Networks (IPSN03, 2003
64 H. Wu and J. M. Mendel. “Classification of battlefield ground vehicles using acoustic features and fuzzy logic rule-based classifiers”. Fuzzy Systems, IEEE Transactions 15(1):56 –72, 2007
65 S. Thoerdoridis and K. Koutroumbas. “Pattern Recognition”. Elsvier Inc., 2009
66 B. Lantow. “Applying distributed classification algorithms to wireless sensor networks a brief view into the application of the sprint algorithm family”. In Networking, ICN, Seventh International Conference, 2008
67 C. Meesookho, S. Narayanan, and C. Raghavendra. “Collaborative classification applications in sensor networks”. In Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002
68 A. Prieto, C. G. Puntonet, B. Prieto, and M. Rodr´?guez-A´ lvarez. “A competitive neural network for blind separation of sources based on geometric properties”. In IWANN ’97: Proceedings of the International Work-Conference on Artificial and Natural Neural Networks. London, UK: Springer-Verlag, 1997
69 Y.-W. Chen, X.-Y. Zeng, and Z. Nakao. “Blind separation based on an evolutionary neural network”. Pattern Recognition, International Conference on, (2): p. 2973, 2000
70 M. Solazzi and A. Uncini. “Spline neural networks for blind separation of postnonlinear- linear mixtures”. Circuits and Systems I: Regular Papers, IEEE Transactions on, 51(4):817–829, 2004
71 J.-M. Ye, X.-L. Zhu, and X.-D. Zhang. “Adaptive blind separation with an unknown number of sources”. Neural Comput., 16(8):1641–1660, 2004
72 T.-Y. Sun, C.-C. Liu, S.-J. Tsai, and S.-T. Hsieh. “Blind source separation with dynamic source number using adaptive neural algorithm”. Expert Syst. Appl., 36(5)8855–8861, 2009
73 W. Penny, S. Roberts, and R. Everson. “Hidden markov independent components for biosignal analysis”. In Advances in Medical Signal and Information Processing, 2000. First International Conference on (IEE Conf. Publ. No. 476), 2000
74 X. Wang, H. Qi, and H. Du. “Distributed source number estimation for multiple target detection in sensor networks”. In Statistical Signal Processing, 2003 IEEE Workshop, 2003
75 Y. Kai, H. Qi, W. Jianming, and L. Haitao. “Multiple vehicle signals separation based on particle filtering in wireless sensor network”. Journal of Systems Engineering and Electronics, 19(3):440-446, 2008. [Online]. Available at :http://www.sciencedirect.com/science/article/B82XK-4SVTN2V- 5/2/379989fc284a479b6102967e30b0769a
76 H. Chen, C. K. Tse, and J. Feng “Source extraction in bandwidth constrained wireless sensor networks”. IEEETRANSACTION ON CIRCUITS AND SYSTEMS-II:EXPRESS BRIEFS, 55(9):947–951, 2008
77 H. Qi, X. Tao, and L. H. Tao. “Multiple target recognition based on blind source separation and missing feature theory”. In Computational Advances in Multi-Sensor Adaptive Processing 1st IEEE International Workshop on Volume, 2005
78 F. Silva, J. Heidemann, R. Govindan, and D. Estrin. “Frontiers in Distributed Sensor Networks”. CRC Press, Inc., 2003
79 X. Wang, H. Qi, and H. Du. “Distributed source number estimation for multiple target detection in sensor networks”. In StatisticalSignal Processing, 2003 IEEE Workshop, 2003
80 R. J. Weiss and D. P. W. Ellis. “Estimating single-channel source separation masks: Relevance vector machine classifiers vs. pitch-based masking”. In Proceedings of the ISCA Tutorial and Research Workshop on Statistical and Perceptual Audition (SAPA), 2006
81 R. Braunling, R. M. Jensen, M. A. Gallo. “Acoustic target detection, tracking, classification, and location in a multiple-target environment”. G. Yonas, Ed., SPIE, 3081(1): 57–66, 1997 [Online]. Available at: http://link.aip.org/link/?PSI/3081/57/1
82 E. Drakopoulos, J. J. Chao, C. C. Lee. “A two-level distributed multiple hypothesis decision system”. 37(3):380–384,1992
83 J. H. Kotecha, V. Ramachandranand, A. M. Sayeed. “Distributed multitarget classification in wireless sensor networks”. 23(4):703–824, 2005
84 E. F. Nakamura, A. A. F. Loureiro, A. C. Frery. “Information fusion for wireless sensor networks: Methods, models, and classifications”. ACM Comput. Surv., 39(3):9, 2007
85 R. Brooks, P. Ramanathan, A. Sayeed. “Distributed target classification and tracking in sensor networks”. Proceedings of the IEEE, 91(8):1163–1171, 2003
86 A. Aljaafreh and L. Dong. “Hidden markov model based classification approach for multiple dynamic vehicles in wireless sensor networks”. In Networking, Sensing and Control (ICNSC), 2010 International Conference, 2010
87 J. Llinas and D. Hall. “An introduction to multi-sensor data fusion”. In Circuits and Systems, ISCAS ’98. Proceedings of the 1998 IEEE International Symposium on 6:1998
88 I. Liggins, M.E., C.-Y. Chong, I. Kadar, M. Alford, V. Vannicola, S. Thomopoulos. “Distributed fusion architectures and algorithms for target tracking”. Proceedings of the IEEE, 85(1):95–107, 997
89 Z. H. Kamal, M. A. Salahuddin, A. K. Gupta, M. Terwilliger, V. Bhuse, and B. Beckmann. “Analytical analysis of data and decision fusion in sensor networks”. In ESA/VLSI, 2004
90 G. Xing, R. Tan, B. Liu, J. Wang, X. Jia, and C.-W. Yi. “Data fusion improves the coverage of wireless sensor networks”. In MobiCom ’09: Proceedings of the 15th annual international conference on Mobile computing and networking. New York, NY, USA: ACM, 2009
91 D. J. Miller, Y. Zhang, G. Kesidis. “Decision aggregation in distributed classification by a transductive extension of maximum entropy/improved iterative scaling.” EURASIP Journal on Advances in Signal Processing, 21: 2008
92 A. D’Costa, V. Ramachandran, A. Sayeed. “Distributed classification of gaussian space-time sources in wireless sensor networks”. Selected Areas in Communications, IEEE Journal on, 22(6):1026–1036, 2004
93 A. Aljaafreh and L. Dong. “Cooperative detection of moving targets in wireless sensor network based on fuzzy dynamic weighted majority voting decision fusion”. In Networking, Sensing and Control (ICNSC), International Conference, 2010
94 J. Kittler, M. Hatef, R. P. Duin, and J. Matas. “On combining classifiers”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3): 226–239, 1998
95 X. Wang and S. Wang. “Collaborative signal processing for target tracking in distributed wireless sensor networks”. J. Parallel Distrib. Comput., 67(5):501–515, 2007
96 D. Hall, J. Llinas. “An introduction to multisensor data fusion”. Proceedings of the IEEE, 85(1)6–23,1997
97 A. Sinha, H. Chen, D. Danu, T. Kirubarajan, and M. Farooq. “Estimation and decision fusion: A survey.” Neurocomputing, 71(13-15):2650– 2656, 2008, artificial Neural Networks (ICANN 2006) / Engineering of Intelligent Systems (ICEIS 2006). [Online]. Available at: http://www.sciencedirect.com/science/article/B6V10-4SFS0KH- 8/2/f59b9b186c4bbbfe157bf08a07f72c4f.
98 E. Drakopoulos, J. Chao, and C. Lee. “A two-level distributed multiple hypothesis decision system”. Automatic Control, IEEE Transactions on, 37(3):380– 384,1992
99 A. Speranzon, C. Fischione, and K. Johansson. “Distributed and collaborative estimation over wireless sensor networks”. In Decision and Control, 45th IEEE Conference, 2006
Dr. Ahmad
- Jordan
Associate Professor Ala Al-Fuqaha
- United States of America