Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(214.89KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Design PID-Like Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator
Farzin Piltan, N. Sulaiman , Arash Zargari, Mohammad Keshavarz, Ali Badri
Pages - 184 - 194     |    Revised - 01-09-2011     |    Published - 05-10-2011
Volume - 2   Issue - 4    |    Publication Date - September / October 2011  Table of Contents
MORE INFORMATION
KEYWORDS
Tunable Gain, Robot Manipulator, Fuzzy Logic Controller, On-line Tunable Gain
ABSTRACT
In this study, an on-line tunable gain model free PID-like fuzzy controller (GTFLC) is designed for three degrees of freedom (3DOF) robot manipulator to rich the best performance. Fuzzy logic controller is studied because of its model free and high performance. Today, robot manipulators are used in unknown and unstructured environment and caused to provide sophisticated systems, therefore strong mathematical tools are used in new control methodologies to design adaptive nonlinear robust controller with acceptable performance (e.g., minimum error, good trajectory, disturbance rejection). The strategies of control robot manipulator are classified into two main groups: classical and non-classical methods, however non linear classical theories have been applied successfully in many applications, but they also have some limitation. One of the most important nonlinear non classical robust controller that can used in uncertainty nonlinear systems, are fuzzy logic controller. This paper is focuses on applied mathematical tunable gain method in robust non classical method to reduce the fuzzy logic controller limitations. Therefore on-line tunable PID like fuzzy logic controller will be presented in this paper.
CITED BY (63)  
1 Ranjbar, B., Mahmoodi, J., Karbasi, H., Dashti, G., & Omidvar, A. (2015). Robot Manipulator Path Planning Based on Intelligent Multi-resolution Potential Field. International Journal of u-and e-Service, Science and Technology, 8(1), 11-26.
2 sadegh Dahideh, M., Najafi, M., Zarei, A., Barmayeh, Y., & Afshar, M. (2015). Intelligent Mechatronic Model Reference Theory for Robot End-effector Control. International Journal of u-and e-Service, Science and Technology, 8(1), 165-172.
3 Sahamijoo, G., Avatefipour, O., Nasrabad, M. R. S., Taghavi, M., & Piltan, F. (2015). Research on Minimum Intelligent Unit for Flexible Robot. International Journal of Advanced Science and Technology, 80, 79-104.
4 Kurniawan, K. A., Utomo, D., & Nugroho, S. (2015). Direction Control System on a Carrier Robot Using Fuzzy Logic Controller. In Intelligence in the Era of Big Data (pp. 27-36). Springer Berlin Heidelberg.
5 Chahkoutahi, A., MoradiPour, M. R., Gholami, M., Ashja, S., & Rahimi, M. H. (2015). Design High Precision Intelligent Nonlinear-Based Controller. International Journal of u-and e-Service, Science and Technology, 8(1), 201-210.
6 Wei, the staff super, & SOCIALIST. (2015). Applied Research in nonlinear control arm of linear quadratic regulator. Journal of Mechanical & Electrical Engineering, 32 (6).
7 Babakhani, A. R., Moradi, E., Salooki, M., & Fakhraie, R. (2015). Novel Intelligent-Based Gravity Control for Industrial Robot Arm. International Journal of Hybrid Information Technology, 8(1), 121-132.
8 Mozafari, N. G., Piltan, F., Shamsodini, M., Yazdanpanah, A., & Roshanzamir, A. (2014). On Line Tuning Premise and Consequence FIS Based on Lyaponuv Theory with Application to Continuum Robot. International Journal of Intelligent Systems and Applications (IJISA), 6(3), 96.
9 El-Nagar, A. M., & El-Bardini, M. (2014). Practical implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller. Ain Shams Engineering Journal, 5(2), 475-487.
10 Nazari, I., Hosainpour, A., Piltan, F., Emamzadeh, S., & Mirzaie, M. (2014). Design Sliding Mode Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 6(4), 63.
11 Piran, M., Piltan, F., Akbari, M., Garg, R., & Bazregar, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. International Journal of Intelligent Systems and Applications (IJISA), 6(2), 76.
12 Bazregar, M., Piltan, F., Nabaee, A., & Ebrahimi, M. (2014). Design Modified Fuzzy PD Gravity Controller with Application to Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 6(3), 82.
13 Piltan, F., Piran, M., Bazregar, M., & Akbari, M. (2013). Design High Impact Fuzzy Baseline Variable Structure Methodology to Artificial Adjust Fuel Ratio. International Journal of Intelligent Systems and Applications (IJISA), 5(2), 59.
14 Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(5), 1.
15 Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123.
16 Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 1.
17 Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(12), 135.
18 Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Adjust the fuel ratio by high impact chattering free sliding methodology with application to automotive engine. International Journal of Hybrid Information Technology, 6(1), 13-24.
19 Piltan, F., Mansoorzadeh, M., Zare, S., Shahryarzadeh, F., & Akbari, M. (2013). Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control. International Journal of Electrical and Computer Engineering (IJECE), 3(2), 171-185.
20 Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3).
21 Mirshekaran, M., Piltan, F., Esmaeili, Z., Khajeaian, T., & Kazeminasab, M. (2013). Design Sliding Mode Modified Fuzzy Linear Controller with Application to Flexible Robot Manipulator. International Journal of Modern Education and Computer Science (IJMECS), 5(10), 53.
22 Ebrahimi, M. M., Piltan, F., Bazregar, M., & Nabaee, A. (2013). Artificial Chattering Free on-line Modified Sliding Mode Algorithm: Applied in Continuum Robot Manipulator. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(5), 57.
23 Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72.
24 Jalali, A., Piltan, F., Hashemzadeh, M., BibakVaravi, F., & Hashemzadeh, H. (2013). Design Parallel Linear PD Compensation by Fuzzy Sliding Compensator for Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(12), 97.
25 Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation (IJRA), 2(4), 149-162.
26 Sadrnia, O. R., Piltan, F., Jafari, M., Eram, M., & Shamsodini, M. (2013). Design PID Estimator Fuzzy plus Backstepping to Control of Uncertain Continuum Robot. International Journal of Hybrid Information Technology, 6(4), 31-48.
27 Moosavi, M., Eram, M., Khajeh, A., Mahmoudi, O., & Piltan, F. (2013). Design New Artificial Intelligence Base Modified PID Hybrid Controller for Highly Nonlinear System. International Journal of Advanced Science and Technology, 57.
28 Jalali, A., Piltan, F., Hashemzadeh, H., Hasiri, A., & Hashemzadeh, M. (2013). Design Novel Soft Computing Backstepping Controller with Application to Nonlinear Dynamic Uncertain System. International Journal of Intelligent Systems and Applications (IJISA), 5(10), 93.
29 Piltan, F., Jafari, M., Eram, M., Mahmoudi, O., & Sadrnia, O. R. (2013). Design Artificial Intelligence-Based Switching PD plus Gravity for Highly Nonlinear Second Order System. International Journal of Engineering and Manufacturing (IJEM), 3(1), 38.
30 Piltan, F., Zare, S., ShahryarZadeh, F., & Mansoorzadeh, M. (2013). Supervised Optimization of Fuel Ratio in IC Engine Based on Design Baseline Computed Fuel Methodology. International Journal of Information Technology and Computer Science (IJITCS), 5(4), 76.
31 Shamsodini, M., Piltan, F., Jafari, M., reza Sadrnia, O., & Mahmoudi, O. (2013). Design Modified Fuzzy Hybrid Technique: Tuning By GDO. International Journal of Modern Education and Computer Science (IJMECS), 5(8), 58.
32 Piltan, F., Bairami, M. A., Aghayari, F., & Rashidian, M. R. (2013). Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator. International Journal of Information Technology and Computer Science (IJITCS), 5(7), 103.
33 Bazregar, M., Piltan, F., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Information Technology and Computer Science (IJITCS), 6(1), 101.
34 Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111.
35 Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(9), 103.
36 Boukens, M., & Boukabou, A. (2013, October). PD with fuzzy compensator control of robot manipulators: Experimental study. In Systems and Control (ICSC), 2013 3rd International Conference on (pp. 973-978). IEEE.
37 Bayat, R. (2013). Artificial Intelligence SVC Based Control of Two Machine Transmission System. International Journal of Intelligent Systems and Applications (IJISA), 5(8), 1.
38 Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation (IJRA), 1(4), 175-189.
39 Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., & Hosainpour, A. (2012). PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation, (3), 167-191.
40 Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
41 Piltan, F., Hosainpour, A., Mazlomian, E., Shamsodini, M., & Yarmahmoudi, M. H. (2012). Online Tuning Chattering Free Sliding Mode Fuzzy Control Design: Lyapunov Approach. International Journal of Robotics and Automation, 3(3), 77-105.
42 Piltan, F., Nazari, I., Siamak, S., & Ferdosali, P. (2012). Methodology of FPGA-based mathematical error-based tuning sliding mode controller. International Journal of Control and Automation, 5(1), 89-118.
43 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Methodology of Mathematical Error-Based Tuning Sliding Mode Controller. International Journal of Engineering, 6(2), 96-117.
44 Piltan, F., Dialame, M., Zare, A., & Badri, A. (2012). Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator. International Journal of Engineering, 6(1), 25-41.
45 Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141.
46 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications (IJISA), 4(11), 40.
47 Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211.
48 Piltan, F., Aghayari, F., Rashidian, M. R., & Shamsodini, M. (2012). A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator. International Journal of Robotics and Automation, 3(1), 45-58.
49 Piltan, F., Jahed, A., Rezaie, H., & Boroomand, B. (2012). Methodology of Robust Linear On-line High Speed Tuning for Stable Sliding Mode Controller: Applied to Nonlinear System. International Journal of Control and Automation, 5(3), 217-236.
50 Piltan, F., Akbari, M., Piran, M., & Bazregar, M. (2012). Design Model Free Switching Gain Scheduling Baseline Controller with Application to Automotive Engine. International Journal of Information Technology and Computer Science (IJITCS), 5(1), 65.
51 Piltan, F., Bayat, R., Aghayari, F., & Boroomand, B. (2012). Design Error-Based Linear Model-Free Evaluation Performance Computed Torque Controller. International Journal of Robotics and Automation, 3(3), 151-166.
52 Piltan, F., Siamak, S., Bairami, M. A., & Nazari, I. (2012). Gradient descent optimal chattering free sliding mode fuzzy control design: LYAPUNOV approach. International Journal of Advanced Science and Technology, 43, 73-90.
53 Piltan, F., Bayat, R., Mehara, S., & Meigolinedjad, J. (2012). GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace. International Journal of Information Engineering and Electronic Business (IJIEEB), 4(5), 17.
54 Piltan, F., Mehrara, S., Bayat, R., & Rahmdel, S. (2012). Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
55 Piltan, F., Piran, M., Akbari, M., & Barzegar, M. (2012). Baseline Tuning Methodology Supervisory Sliding Mode Methodology: Applied to IC Engine. International Journal of Advances in Applied Sciences, 1(3), 116-124.
56 Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
57 Seven Tir Ave, S. Effect of Rule Base on the Fuzzy-Based Tuning Fuzzy Sliding Mode Controller: Applied to 2 nd Order Nonlinear System.
58 Piltan, F., Bairami, M. A., Aghayari, F., & Allahdadi, S. (2011). Design adaptive artificial inverse dynamic controller: Design sliding mode fuzzy adaptive new inverse dynamic fuzzy controller. International Journal of Robotics and Automation (IJRA), 3(1), 13.
59 Piltan, F., Allahdadi, S., Mohammad, A. B., & Nasiri, H. (2011). Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator. International Journal of Robotics and Automation, 3(1), 27-44.
60 Seven Tir Ave, S. (2011). Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
61 Seven Tir Ave, S. Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
62 Dovydaitis, J., Jasinevicius, R., Petrauskas, V., & Vrubliauskas, A. Training, Retraining, and Self-training Procedures for the Fuzzy Logic-Based Intellectualization of IoT&S Environments. International Journal of Fuzzy Systems, 1-11.
63 Taher, S. A., & Zolfaghari, M. Adaptive Fuzzy Gain-Scheduling Design to Improve Instantaneous Average Current–Sharing Control Scheme for Parallel–Connected Inverters Considering Line Impedance Impact in Microgrid Networks.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 T. R. Kurfess, Robotics and automation handbook: CRC, 2005. [2]
2 K. Ogata, Modern control engineering: Prentice Hall, 2009.
3 B. Siciliano and O. Khatib, Springer handbook of robotics: Springer-Verlag New York Inc, 2008.
4 L. A. Zadeh, "Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic," Fuzzy Sets and Systems, vol. 90, pp. 111-127, 1997.
5 L. Reznik, Fuzzy controllers: Butterworth-Heinemann, 1997.
6 J. Zhou and P. Coiffet, "Fuzzy control of robots," 2002, pp. 1357-1364.
7 S. Banerjee and P. Y. Woo, "Fuzzy logic control of robot manipulator," 2002, pp. 87-88.
8 K. Kumbla, et al., "Soft computing for autonomous robotic systems," Computers and Electrical Engineering, vol. 26, pp. 5-32, 2000.
9 C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller. I," IEEE Transactions on systems, man and cybernetics, vol. 20, pp. 404-418, 1990.
10 R. J. Wai, et al., "Implementation of artificial intelligent control in single-link flexible robot arm," 2003, pp. 1270-1275.
11 R. J. Wai and M. C. Lee, "Intelligent optimal control of single-link flexible robot arm," Industrial Electronics, IEEE Transactions on, vol. 51, pp. 201-220, 2004.
12 M. B. Menhaj and M. Rouhani, "A novel neuro-based model reference adaptive control for a two link robot arm," 2002, pp. 47-52.
13 S. Mohan and S. Bhanot, "Comparative study of some adaptive fuzzy algorithms for manipulator control," International Journal of Computational Intelligence, vol. 3, pp. 303– 311, 2006.
14 B. K. Yoo and W. C. Ham, "Adaptive control of robot manipulator using fuzzy compensator," Fuzzy Systems, IEEE Transactions on, vol. 8, pp. 186-199, 2002.
15 Piltan, F., et al., “Design sliding mode controller for robot manipulator with artificial tunable gain,” Canaidian Journal of pure and applied science, 5 (2): 1573-1579, 2011.
16 Piltan, F., et al., “Design Artificial Nonlinear Robust Controller Based on CTLC and FSMC with Tunable Gain,” International Journal of Robotic and Automation, 2 (3): 205-220, 2011.
17 Piltan, F., et al., “Design Mathematical Tunable Gain PID-Like Sliding Mode Fuzzy Controller with Minimum Rule Base,” International Journal of Robotic and Automation, 2 (3): 146-156, 2011.
18 Piltan, F., et al., “Design of FPGA based sliding mode controller for robot manipulator,” International Journal of Robotic and Automation, 2 (3): 183-204, 2011.
19 iltan, F., et al., “Novel sliding mode controller for robot manipulator using FPGA,” Journal of Advanced science and Engineering Research, 1 (1): 1-22, 2011.
20 Piltan, F., et al., “Design a New sliding mode Adaptive Hybrid Fuzzy controller,” Journal of Advanced science and Engineering Research, 1 (1): 115-123, 2011.
21 Piltan, F., et al., “Design Artificial Robust Control of Second Order System Based on Adaptive Fuzzy Gain Scheduling,” International Journal of Robotic and Automation, 2 (4): 2011.
22 Piltan, F., et al., “Design of Pc-Based Sliding Mode Controller and Normalized Sliding Surface Slope Using PSO Method for Robot Manipulator,” International Journal of Robotic and Automation, 2 (4): 205-220, 2011.
23 Piltan, F., et al., “Design of Model Free Adaptive Fuzzy Computed Torque Controller: Applied to Nonlinear Second order System,” International Journal of Robotic and Automation, 2 (4): 232-244, 2011.
24 Piltan, F., et al., “An Adaptive Sliding Surface Slope Adjustment in PD Sliding Mode Fuzzy Control for Robot Manipulator,” International Journal of Control and Automation, 4 (3): 65- 76, 2011.
Mr. Farzin Piltan
SSP Co. - Malaysia
SSP.ROBOTIC@yahoo.com
Mr. N. Sulaiman
- Malaysia
Mr. Arash Zargari
- Iran
Mr. Mohammad Keshavarz
- Iran
Mr. Ali Badri
-