Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

(226.14KB)
This is an Open Access publication published under CSC-OpenAccess Policy.
Dual-Diameter Variation –Immune CNFET-based 7T SRAM Cell
Aminul Islam, Mohd. Hasan
Pages - 1 - 14     |    Revised - 31-01-2011     |    Published - 08-02-2011
Volume - 1   Issue - 1    |    Publication Date - July / August 2011  Table of Contents
MORE INFORMATION
KEYWORDS
Namoelectronics, Nanotechnology, Nanotubes
ABSTRACT
This paper proposes a variation – tolerant dual-diameter CNFET-based 7T (seven transistor) SRAM (static random access memory) cell. The use of appropriate DCNT (diameter of CNFET) and hence Vt of CNFETs is a critical piece of our design strategy. In this work, dual-Vt and dual-diameter CNFETs have been used using suitable chiral vectors for appropriate transistors. It also investigates the impact of process, voltage and temperature variations on its design metrics and compares the results with its counterpart − CMOS-based 7T SRAM cell and standard 6T SRAM cell (only few parameters). The proposed SRAM cell offers 1.35× and 1.25× improvement in standby power on an average @ VDD = 1 V and 0.9 V respectively, 30% improvement in SNM (Static Noise Margin) over CMOS-based 7T cell. Proposed design outperforms 6T in terms of 71.4% improvement in RSNM and shows same read stability as its CMOS counterpart, It shows its robustness by offering 1.4× less spread in TRA (read access time) at 1 V and 1.2× less spread in TRA at 0.9 V than that of its CMOS counterpart at the expense of 1.6× read delay. The proposed bitcell also exhibits higher performance while writing (takes 1.3× and 1.2× less TWA (write access time) @ VDD = 1 V and VDD= 0.9 V respectively). It also proves its robustness against process variations by featuring tighter spread in TWA variability (1.4× and 1.2× @ VDD= 1 V and 0.9 V respectively).
CITED BY (2)  
1 Srivastava, p., & islam, a. (2015). cnfet-based design of resilient mcml xor/xnor circuit at 16-nm technology node. indian journal of engineering & materials sciences, 22, 261-267.
2 Islam, a. (2014). power and variability aware design of circuits and systems.
1 Google Scholar
2 CiteSeerX
3 refSeek
4 Scribd
5 SlideShare
6 PdfSR
1 D. Burnett, K. Erington, C. Subramanian, and K. Baker. “Implications of fundamental threshold voltage variations for high-density SRAM and logic circuits”. In Proceedings of the Symp. VLSI Tech., 15–16, 1994.
2 S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, B. Cherkauer, J. Stinson, J. Benoit, R. Varada, J. Leung, et al. “A 65-nm Dual-Core Multithreaded Xeon Processor With 16-MB L3 Cache”. IEEE J. Solid-State Circuits, 42(1): 17-25, 2007.
3 A. Naeemi, R. Sarvari, and J. D. Meindl. “Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)”. IEEE Electron Device Lett., 26(2): 84–86, 2005.
4 N. Srivastava and K. Banerjee. “A comparative scaling analysis of metallic and carbon nanotube interconnections for nanometer scale VLSI technologies”. In Proceedings of the 21st International VLSI Multilevel Interconnection Conference (VMIC ’04). 393–398, 2004.
5 A. Raychowdhury and K. Roy. “Modeling of metallic carbonnanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies”. IEEE Trans. Comput.-Aided Des. Integr. Syst., 25(1):58–65, 2006.
6 A. Raychowdhury and K. Roy. “A circuit model for carbon nanotube interconnects: comparative study with Cu interconnects for scaled technologies”. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’04), 237–240, 2004.
7 P. McEuen, M. Fuhrer, and H. Park, “Single-walled carbon nanotube electronics”. IEEE Trans. Nanotechnol., 1(1):pp. 78–85, 2002.
8 H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, “Multichannel ballistic transport in multiwall carbon nanotubes,” Physical Review Letters, 95(8), Article ID 086601, 4 pages, 2005.
9 A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M. Lundstrom, and H. Dai. “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays”. Nano Lett., 4(7):1319–1322, 2004.
10 Z. Yao, C. L. Kane, and C. Dekker. “High-field electrical transport in single-wall carbon nanotubes”. Phys. Rev. Lett., 84(13):2941– 2944, 2000.
11 A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom, and H. Dai. “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics”. Nano Lett., 4(3):447–450, 2004.
12 D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai. “Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts”. Nano Lett., 3(11):1541–1544, 2003.
13 Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber. “High performance silicon nanowire field effect transistors”. Nano Lett., 3(2):149–152, 2003.
14 Stanford University CNFETModelWeb site. (2008). [Online]. Available: http://nano.stanford.edu/model.php?id=23
15 J. Deng, H.-S. P. Wong. “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application - Part I: Model of the Intrinsic Channel Region”. IEEE Trans. Electron Devices, 54(12):3186-3194, 2007
16 J. Deng, H.-S. P. Wong. “A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application - Part II: Full Device Model and Circuit Performance Benchmarking”. IEEE Trans. Electron Devices, 54(12):3195-3205, 2007.
17 H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey. “SRAM leakage suppression by minimizing standby supply voltage”. In Proceedings of the Int. Symp. Quality Electron. Des., 55-60, 2004.
18 R. Aly, M. Faisal, and A. Bayoumi. “Novel 7T SRAM cell for low power cache design”. In Proceedings of the IEEE SOC Conf., 171–174, 2005.
19 J. Zhang, et at.. “Carbon nanotube correlation: promising opportunity for CNFET circuit yield enhancement”. In Proceedins of the DAC 2010, Anatheim, California, USA, 889-892, 2010.
20 orkar, S., et al. “Statistical circuit design with carbon nanotubes”. U.S. Patent Application 20070155065, 2005.
21 H. Dai. “Carbon nanotubes: synthesis, integration, and properties”. Acc. Chem. Res. 35(12):1035-1044, 2002.
22 N. Hamada, S.-I. Sawada, and A. Oshiyama. “New one-dimensional conductors: graphite microtubules.” Phys. Rev. Lett., 68(10):1579–1581, 1992.
23 Y. Li, et al. “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method”. Nano Letters, 4(2):317-321, 2004.
24 L. Ding, et al. “Selective growth of well-aligned semiconducting single-walled carbon nanotubes”. Nano Letters, 9(2):800-805, 2009.
25 M. LeMieux, et al. “Self-sorted, aligned nanotube networks for thin-film transistors”. Science, 321(5885):101-104, 2008.
26 M. Engel, et al. “Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays”. ACS Nano, 2(12):2445-2452, 2008.
27 J. Zhang, N. Patil and S. Mitra. “Probabilistic analysis and design of metallic-carbonnanotube- tolerant digital logic circuits”. IEEE Trans. Comput.-Aided Des. Integr. Syst, 28(9):1307-1320, 2009.
28 G. Zhang, et al. “Selective etching of metallic carbon nanotubes by gas-phase reaction”. Science, 314(5801):974-977, 2006.
29 P. G. Collins, M. S. Arnold and P. Avouris. “Engineering carbon nanotubes and nanotube circuits using electrical breakdown”. Science, 292:706-709, 2001.
30 A. Lin, et al. “Threshold voltage and on-off ratio tuning for multiple-tube carbon nanotube FETs”. IEEE Trans. Nanotechnol., 8(1):4-9, 2009.
31 N. Patil, Albert Lin, Jie Zhang, Hai Wei, Kyle Anderson H. -S. Philip Wong and Subhasish Mitra. “Scalable carbon nanotube computational and storage circuits immune to metallic and mis-positioned carbon nanotubes”. IEEE Trans. Nanotechnol., 99, 2010.
32 N. Patil, et al.. “Design methods for misaligned and mis-positioned carbon-nanotube-immune circuits”. IEEE Trans. Comput.-Aided Des. Integr. Syst. 27(10):1725-1736, 2008.
33 D. Akinwande, et al. “Monolithic integration of CMOS VLSI and carbon nanotubes for hybrid nanotechnology application”. IEEE Trans. Nanotechnol., 7(5):636-639, 2008.
34 Berkeley Predictive Technology Model, UC Berkeley Device Group. [Online]. Available: http://www-device.eecs.berkeley.edu/~ptm/.
35 I. Amlani, J. Lewis, K. Lee, R. Zhang, J. Deng, and H.-S. P. Wong. “First demonstration of AC gain from a single-walled carbon nanotube common-source amplifier”. In Proceedings of the Int. Electron Devices Meet., 1-4, 2006.
36 K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits”. In Proceedings of the IEEE, 91(2):305–327, 2003.
37 B. H. Calhoun, and Anantha P. Chandrakasan. “Static Noise Margin Variation for Subthreshold SRAM in 65-nm CMOS”. IEEE J. Solid State Circuits, 42(7), 2006.
Associate Professor Aminul Islam
Birla Institute of Technology (deemed university) - India
aminulislam@bitmesra.ac.in
Professor Mohd. Hasan
Aligarh Muslim University - India