Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 158 countries worldwide.
A linear-Discriminant-Analysis-Based Approach to Enhance the Performance of Fuzzy C-means Clustering in Spike Sorting With low-SNR Data
Chien-Wen Cho, Wen-Hung Chao, You-Yin Chen
Pages - 1 - 13     |    Revised - 15-06-2007     |    Published - 30-06-2007
Volume - 1   Issue - 1    |    Publication Date - June 2007  Table of Contents
Spike sorting, spike classification, fuzzy c-means, principal-component analysis, linear discriminant analysis, low-SNR.
Spike sorting is of prime importance in neurophysiology and hence has received considerable attention. However, conventional methods suffer from the degradation of clustering results in the presence of high levels of noise contamination. This paper presents a scheme for taking advantage of automatic clustering and enhancing the feature extraction efficiency, especially for low-SNR spike data. The method employs linear discriminant analysis based on a fuzzy c-means (FCM) algorithm. Simulated spike data [1] were used as the test bed due to better a priori knowledge of the spike signals. Application to both high and low signal-to-noise ratio (SNR) data showed that the proposed method outperforms conventional principal-component analysis (PCA) and FCM algorithm. FCM failed to cluster spikes for low-SNR data. For two discriminative performance indices based on Fisher's discriminant criterion, the proposed approach was over 1.36 times the ratio of between- and within-class variation of PCA for spike data with SNR ranging from 1.5 to 4.5 dB. In conclusion, the proposed scheme is unsupervised and can enhance the performance of fuzzy c-means clustering in spike sorting with low-SNR data.
CITED BY (1)  
1 T. Rashid, “Classification of Churn and non-Churn Customers in Telecommunication Companies” International Journal of Biometrics and Bioinformatics (IJBB), 3(5), pp. 66-95, Nov. 2009.
1 Google Scholar 
2 Academic Journals Database 
3 ScientificCommons 
4 Academic Index 
5 CiteSeerX 
6 refSeek 
7 iSEEK 
8 ResearchGATE 
9 Libsearch 
10 Bielefeld Academic Search Engine (BASE) 
11 Scribd 
12 WorldCat 
13 SlideShare 
15 PdfSR 
16 National Science Digital Library (NSDL) 
17 The Collection of Computer Science Bibliographies  
18 worldwidescience 
19 science.gov 
1 R. Q. Quiroga, Z. Nadasdy and Y. Ben-Shaul. “Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering”. Neural Comp, 16(8):1661-1687, 2004
2 F. Rieke et al. “Spikes: exploring the neural code”, Cambridge, MA: The MIT Press (1996)
3 R. Q. Quiroga, Z. Nadasdy and Y. Ben-Shaul. “Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering”. Neural Comp, 16(8):1661-1687, 2004
4 F. Rieke et al. “Spikes: exploring the neural code”, Cambridge, MA: The MIT Press (1996)
5 M. S. Lewicki. “A review of methods for spike sorting: The detection and classification of neural action potentials”. Network: Computation Neural Syst, 9(4):R53-R78, 1998
6 B. C. Wheeler and W. J. Heetderks. “A comparison of techniques for classification of multiple neural signals”. IEEE Trans Biomed Eng, 29(12):752-759, 1982
7 K. Mirfakhraei and K. Horch. “Classification of action potentials in multi-unit intrafascicular recordings using neural network patern-recognition techniques”. IEEE Trans Biomed Eng, 41(1):89-91, 1994
8 S. N. Gozani and J. P. Miller. “Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters”. IEEE Trans Biomed Eng, 41(4):358-372, 1994
9 X. Yang and S. A. Shamma. “A totally automated system for the detection and classification of neural spikes”. IEEE Trans Biomed Eng, 35(10):806-816, 1988
10 G. Zouridakis and D. C. Tam. “Identification of reliable spike templates in multi-unit extracellular recordings using fuzzy clustering”. Comp Meth Prog Biomed, 61(2):91-98, 2000
11 R. Chandra and L. M. Optican. “Detection, classification, and superposition resolution of action potentials in multiunit single channel recordings by an on-line real-time neural network”. IEEE Trans Biomed Eng, 44(5):403-412, 1997
12 K. H. Kim and S. J. Kim, “Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier”. IEEE Trans Biomed Eng, 47(10):1406-1411, 2000
13 K. H. Kim and S. J. Kim. “Method for unsupervised classification of multiunit neural signal recording under low signal-to-noise ratio”. IEEE Trans Biomed Eng, 50(4):421-431, 2003
14 K. H. Kim, “Improved algorithm for fully-automated neural spike sorting based on projection pursuit and Gaussian mixture model”. Inter J Control Autom Syst, 4(6):705-713, 2006
15 C. Liu and H. Wechsler. Enhanced Fisher linear discriminant model for face recognition. In Proceedings of Int Conf Pattern Recognition.1368-1372, 1998
16 A. Hyvarinen et al. “Independent component analysis”, New York: Wiley (2001)
17 D. Donoho and I. M. Johnstone. “Ideal spatial adaptation by wavelet shrinkage”. Biometrika, 81(3):425-455, 1994
18 R. Tasker, Z. Israel and K. Burchiel. “Microelectrode recording in movement disorder surgery”. New York: Thieme Medical Publishers (2004)
19 G. L. Gerstein and W. A. Clark. “Simultaneous studies of firing patterns in several neurons”. Science,143(3612):1325-1327, 1964
20 A. Martinez and M. Kak. “PCA versus LDA”. IEEE Trans Pattern Analysis Machine Intell, 23(2): 233-288, 2001
21 J. Ye, Q. Li. “A two-stage linear discriminant analysis via QR-decomposition”. IEEE Trans Pattern Analysis Machine Intell, 27(6):929-941, 2005
22 D. L. Swets and J. Weng. “Using discriminant eigenfeatures for image retrieval”. IEEE Trans Pattern Anal Machine Intell 18(8):831-836, 1996
23 P. N. Belhumeour, J. P. Hespanha and D. J. Kriegman. “Eigenfaces vs. fisherfaces: recognition using class specific linear projection”. IEEE Trans Pattern Anal Machine Intell, 19(7):711-720, 1997
24 H. R. Barker. “Multivariate Analysis of Variance (MANOVA): A Practical Guide to Its Use in Scientific Decision-Making”, AL: University of Alabama Press (1984)
25 M. S. Lewicki. “Bayesian modeling and classification of neural signals”. Neural Comput, 6(5):1005-1030, 1994
26 X. L. Xie and G. A. Beni. “A validity measure for fuzzy clustering”. IEEE Trans Pattern Anal Machine Intell 13(8):841-847, 1991
27 R. O. Duda and P. E. Hart. “Pattern Classification and Scene Analysis”, New York: John Wiley & Sons (1973)
28 J. C. Bezdek, R. Ehrlich and W. Full. “FCM: The fuzzy c-means clustering algorithm”. Comput Geosci, 10(2):191-203, 1984
29 J. H. Friedman. “Exploratory projection pursuit”. J Ameri Statist Associat, 82(1):249-266, 1987
30 R. A. Fisher. “The use of multiple measurements in taxonomic problems”. Ann eugenics, 7(2):179-188, 1936
31 Y. Meyer. “Wavelet analysis book report”. Bull Am Math Soc (New Series), 28(2):350-360, 1993
32 B. J. Richmond and L. M. Optican. “Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. II. Quantification of response waveform”. J Neurophysiol, 57(1):147-161, 1987
33 P. S. Penev and J. J. Atick. “Local feature analysis: a general statistical theory for object representation”. Network: Comput Neural Syst, 7(3):477-500, 1996
34 S. Qian and D. Chen. “Discrete Gabor transform”. IEEE Trans Signal Process, 41(7): 2429-2438, 1993
35 J. C. Letelier and P. P. Weber. “Spike sorting based on discrete wavelet transform coefficients”. J Neurosci Methods, 101(2):93-106, 2000
Mr. Chien-Wen Cho
- Taiwan
Mr. Wen-Hung Chao
- Taiwan
Mr. You-Yin Chen
- Taiwan