Call for Papers - Ongoing round of submission, notification and publication.
    
  
Home    |    Login or Register    |    Contact CSC
By Title/Keywords/Abstract   By Author
Browse CSC-OpenAccess Library.
  • HOME
  • LIST OF JOURNALS
  • AUTHORS
  • EDITORS & REVIEWERS
  • LIBRARIANS & BOOK SELLERS
  • PARTNERSHIP & COLLABORATION
Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available
(no registration required)

(593.62KB)


-- CSC-OpenAccess Policy
-- Creative Commons Attribution NonCommercial 4.0 International License
>> COMPLETE LIST OF JOURNALS

EXPLORE PUBLICATIONS BY COUNTRIES

EUROPE
MIDDLE EAST
ASIA
AFRICA
.............................
United States of America
United Kingdom
Canada
Australia
Italy
France
Brazil
Germany
Malaysia
Turkey
China
Taiwan
Japan
Saudi Arabia
Jordan
Egypt
United Arab Emirates
India
Nigeria
Detection of Quantitative Trait Loci in Presence of Phenotypic Contamination
Md. Nurul Haque Mollah
Pages - 13 - 21     |    Revised - 30-04-2010     |    Published - 10-06-2010
Published in International Journal of Biometrics and Bioinformatics (IJBB)
Volume - 4   Issue - 2    |    Publication Date - May 2010  Table of Contents
MORE INFORMATION
References   |   Abstracting & Indexing
KEYWORDS
Quantitative trait loci, Gaussian mixture distribution, LOD scores, Likelihood ratio test, Method of maximum B-likelihood, Robustness.
ABSTRACT
Genes controlling a certain trait of organism is known as quantitative trait loci (QTL). The standard Interval mapping (Lander and Botstein, 1989) is a popular way to scan the whole genome for the evidence of QTLs. It searches a QTL within each interval between two adjacent markers by performing likelihood ratio test (LRT). However, the standard Interval mapping (SIM) approach is not robust against outliers. An attempt is made to robustify SIM for QTL analysis by maximizing $eta$-likelihood function using the EM like algorithm. We investigate the robustness performance of the proposed method in a comparison of SIM algorithm using synthetic datasets. Experimental results show that the proposed method significantly improves the performance over the SIM approach for QTL mapping in presence of outliers; otherwise, it keeps equal performance.
ABSTRACTING & INDEXING
1 Google Scholar 
2 ScientificCommons 
3 Academic Index 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 Libsearch 
9 Bielefeld Academic Search Engine (BASE) 
10 Scribd 
11 WorldCat 
12 SlideShare 
13 PDFCAST 
14 PdfSR 
REFERENCES
A. H. Paterson, S. Damon, J. D. Hewitt, D. Zamir, H. D. Rabinowitch, S.E. Lincoln, E. S. Lander, S.D.Tanksley. “Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments”. Genetics, 127, pp. 181-197, 1991.
A. P. Dempster, Laird, and Rubin, D. B.: “Maximum likelihood from incomplete data via the EM algorithm”. J. Roy. Statist. Soc. B, 39, pp. 1-38, 1977.
C. H. Kao. “On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci”. Genetics, 156, pp.855-865, 2000.
C. S. Haley and S. A. Knott. “A simple regression method for mapping quantitative trait in line crosses using flanking markers”. Heredity 69, pp.315-324, 1992.
E. S. Lander and D. Botstein. “Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps”. Genetics, 121, pp. 185-199, 1989.
Elston, R. C., Stewart, J. “The Analysis of Quantitative Traits for Simple Genetic Models from Parental, F1 and Backcross Data”. Genetics, 73, pp. 695-711, 1973.
G. A. Churchill and R. W. Doerge,. “Empirical Threshold Values for Quantitative Triat Mapping”. Genetics, Vol 138, pp. 963-971, 1994.
J. M. Thoday. “Effects of disruptive selection. III. Coupling and repulsion”. Heredity, 14, pp. 35-49, 1960.
K. W. Broman, H. Wu, S. Sen and G. A. Churchill. “R/qtl: QTL mapping in experimental crosses”. Bioinformatics, Vol. 19, pp. 889-890, 2003.
M. N. H. Mollah and S. Eguchi. “Robust Composite interval Mapping for QTL Analysis by Minimum ?-Divergence Method”. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM08) , pp. 115-120, Philadelphia, USA, 2008.
M. N. H. Mollah, N. Sultana, M. Minami and S. Eguchi. “Robust extraction of local structures by the minimum ?-divergence method”. Neural Network, 23, pp. 226-238, 2010.
R. C. Jansen, “ A general mixture model for mapping quantitative trait loci by using molecular markers”. Theor Appl Genet., 85, 252-260, 1992.
MANUSCRIPT AUTHORS
Dr. Md. Nurul Haque Mollah
Department of Statistics - Bangladesh
mnhmollah@yahoo.co.in


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS
 
You can contact us anytime since we have 24 x 7 support.
Join Us|List of Journals|
    
Copyrights © 2025 Computer Science Journals (CSC Journals). All rights reserved. Privacy Policy | Terms of Conditions