Home   >   CSC-OpenAccess Library   >    Manuscript Information
An Experimental Approach For Evaluating Superpixel's Consistency Over 2D Gaussian Blur and Impulse Noise Using Jaccard Similarity Coefficient
Brekhna Brekhna, Caiming Zhang, Yuanfeng Zhou
Pages - 53 - 72     |    Revised - 30-04-2019     |    Published - 01-06-2019
Volume - 13   Issue - 3    |    Publication Date - June 2019  Table of Contents
Superpixels, Jaccard Similarity Coefficient, 2D Gaussian Blur, Impulse Noise, Threshold, Consistency.
This article proposes a rigorous method to assess the consistency of superpixels for different superpixel segmentation algorithms. The proposed method extracts the superpixels that remain unchanged over certain levels of noise by adopting the Jaccard Similarity Coefficient (JSC). Technically, we developed a measure of Jaccard similarity for superpixel segmentation algorithms to compare the similarity between sets of superpixels (original and noisy). The algorithm calls the superpixel segmentation algorithm to generate the superpixel results of the original images and saves their boundary masks and labels. It then applies varying degrees of noise to the images and produces the superpixels results, and the process is repeated for four levels with increased noise value at each iteration. We chose 2D Gaussian Blur, Impulse Noise and a combination of both to corrupt the images. The proposed algorithm generates similarity indices of superpixels (original and noisy) using Jaccard Similarity (JS). To be categorized as a consistent superpixel, the similarity index must meet a predefined coefficient threshold (?) of JSC. The superpixels consistency of four different superpixel segmentation algorithms including Bilateral geodesic distance (BGD), Flooding based superpixels generation (FBS), superpixels via geodesic distance (GDS), and Turbopixel (TP) are evaluated. Precisely, the experimental results demonstrated that no single algorithm was able to yield an optimal outcome and failed to maintain consistent superpixels at each level of noise. Conclusively, more robust superpixel algorithms must be developed to solve such problems effectively.
1 Google Scholar 
2 refSeek 
3 ResearchGATE 
4 Doc Player 
5 Scribd 
6 SlideShare 
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11), 2274-2282.
Aydin, B., & Tamir, M. (2015). U.S. Patent Application No. 14/084,903.
Bank, J., & Cole, B. (2008). Calculating the jaccard similarity coefficients with map reduce for entity pairs in wikipedia. Wikipedia Similarity Team, 1-18.
Brekhna, B., Mahmood, A., Zhou, Y., & Zhang, C. (2017). Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise. Journal of Electronic Imaging, 26(6), 061604.
Chai, Y., Lempitsky, V., & Zisserman, A. (2011, November). Bicos: A bi-level co-segmentation method for image classification. In 2011 International Conference on Computer Vision (pp. 2579-2586). IEEE.
Chen, D. J., Chen, H. T., & Chang, L. W. (2016, September). Fast defocus map estimation. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 3962-3966). IEEE.
Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N. M., ... & Wong, T. Y. (2013). Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE transactions on Medical Imaging, 32(6), 1019-1032.
Dong, X., Shen, J., & Shao, L. (2017). Hierarchical superpixel-to-pixel dense matching. IEEE Transactions on Circuits and Systems for Video Technology, 27(12), 2518-2526.
Dong, X., Shen, J., Shao, L., & Van Gool, L. (2016). Sub-Markov random walk for image segmentation. IEEE Transactions on Image Processing, 25(2), 516-527.
Giraud, R., Ta, V. T., & Papadakis, N. (2017). Evaluation framework of superpixel methods with a global regularity measure. Journal of Electronic Imaging, 26(6), 061603.
Ibrahim, H., Neo, K. C., Teoh, S. H., Ng, T. F., Chieh, D. C. J., & Hassan, N. N. (2012). Impulse noise model and its variations. International Journal of Computer and Electrical Engineering, 4(5), 647.
Indu, S., & Ramesh, C. (2007, March). A noise fading technique for images highly corrupted with impulse noise. In 2007 International Conference on Computing: Theory and Applications (ICCTA'07) (pp. 627-632). IEEE.
Kaufhold, J., Collins, R., Hoogs, A., & Rondot, P. (2006, August). Recognition and segmentation of scene content using region- based classification. In 18th International Conference on Pattern Recognition (ICPR'06) (Vol. 1, pp. 755-760). IEEE.
Levinshtein, A., Stere, A., Kutulakos, K. N., Fleet, D. J., Dickinson, S. J., & Siddiqi, K. (2009). Turbopixels: Fast superpixels using geometric flows. IEEE transactions on pattern analysis and machine intelligence, 31(12), 2290-2297.
Liu, Y. J., Yu, C. C., Yu, M. J., & He, Y. (2016). Manifold SLIC: A fast method to compute content-sensitive superpixels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 651-659).
Mahmood, A., Mian, A., & Owens, R. (2014). Semi-supervised spectral clustering for image set classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 121-128).
Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture analysis for image segmentation. International journal of computer vision, 43(1), 7-27.
Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001, July). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Vancouver:: Iccv.
Mori, G. (2005, October). Guiding model search using segmentation. In Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1 (Vol. 2, pp. 1417-1423). IEEE.
Neubert, P., & Protzel, P. (2012, January). Superpixel benchmark and comparison. In Proc. Forum Bildverarbeitung(Vol. 6).
Niwattanakul, S., Singthongchai, J., Naenudorn, E., & Wanapu, S. (2013, March). Using of Jaccard coefficient for keywords similarity. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 1, No. 6, pp. 380-384).
Pan, X., Zhou, Y., Li, F., & Zhang, C. (2017). Superpixels of RGB-D images for indoor scenes based on weighted geodesic driven metric. IEEE transactions on visualization and computer graphics, 23(10), 2342-2356.
Pan, X., Zhou, Y., Zhang, C., & Liu, Q. (2014, October). Flooding based superpixels generation with color, compactness and smoothness constraints. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 4432-4436). IEEE.
Peng, B., Zhang, L., & Zhang, D. (2011). Automatic image segmentation by dynamic region merging. IEEE Transactions on image processing, 20(12), 3592-3605.
Rajaraman, A., & Ullman, J. D. (2010). Finding similar items. Mining of Massive Datasets, 77, 73-80.
REN, X. (2003). Learning a classification model for segmentation. Proc. 9th ICCV, 2003, 1, 10-17.
Schick, A., Fischer, M., & Stiefelhagen, R. (2012, November). Measuring and evaluating the compactness of superpixels. In Proceedings of the 21st international conference on pattern recognition (ICPR2012) (pp. 930-934). IEEE.
Shen, J., Du, Y., Wang, W., & Li, X. (2014). Lazy random walks for superpixel segmentation. IEEE Transactions on Image Processing, 23(4), 1451-1462.
Shen, J., Hao, X., Liang, Z., Liu, Y., Wang, W., & Shao, L. (2016). Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Transactions on Image Processing, 25(12), 5933-5942.
Stutz, D., Hermans, A., & Leibe, B. (2018). Superpixels: An evaluation of the state-of-the-art. Computer Vision and Image Understanding, 166, 1-27.
Van den Bergh, M., Boix, X., Roig, G., & Van Gool, L. (2015). Seeds: Superpixels extracted via energy-driven sampling. International Journal of Computer Vision, 111(3), 298-314.
Wang, J., & Wang, X. (2012). VCells: Simple and efficient superpixels using edge-weighted centroidal Voronoi tessellations. IEEE Transactions on pattern analysis and machine intelligence, 34(6), 1241-1247.
Wang, M., Liu, X., Gao, Y., Ma, X., & Soomro, N. Q. (2017). Superpixel segmentation: a benchmark. Signal Processing: Image Communication, 56, 28-39.
Wang, P., Zeng, G., Gan, R., Wang, J., & Zha, H. (2013). Structure-sensitive superpixels via geodesic distance. International journal of computer vision, 103(1), 1-21.
Wang, W., Shen, J., Li, X., & Porikli, F. (2015). Robust video object cosegmentation. IEEE Transactions on Image Processing, 24(10), 3137-3148.
Wang, W., Shen, J., Yang, R., & Porikli, F. (2018). Saliency-aware video object segmentation. IEEE transactions on pattern analysis and machine intelligence, 40(1), 20-33.
Wang, Y., & Zhao, Q. (2015, June). Superpixel tracking via graph-based semi-supervised SVM and supervised saliency detection. In 2015 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.
Xiang, D., Tang, T., Zhao, L., & Su, Y. (2013). Superpixel generating algorithm based on pixel intensity and location similarity for SAR image classification. IEEE Geoscience and Remote Sensing Letters, 10(6), 1414-1418.
Zhang, L., Gao, Y., Xia, Y., Lu, K., Shen, J., & Ji, R. (2014). Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Transactions on Multimedia, 16(2), 470-479.
Zhang, Y., Li, X., Gao, X., & Zhang, C. (2017). A simple algorithm of superpixel segmentation with boundary constraint. IEEE Transactions on Circuits and Systems for Video Technology, 27(7), 1502-1514.
Zhou, Y., Pan, X., Wang, W., Yin, Y., & Zhang, C. (2017). Superpixels by bilateral geodesic distance. IEEE Transactions on Circuits and Systems for Video Technology, 27(11), 2281-2293.
Miss Brekhna Brekhna
Shandong university - China
Dr. Caiming Zhang
School of Computer Science and Technology, Shandong University - China
Dr. Yuanfeng Zhou
School of Computer Science and Technology, Shandong University - China