Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 74 countries worldwide.
Modeling of Nitrogen Oxide Emissions in Fluidized Bed Combustion Using Artificial Neural Networks
Mika Liukkonen, Eero Hälikkä, Reijo Kuivalainen, Yrjö Hiltunen
Pages - 25 - 34     |    Revised - 30-06-2010     |    Published - 10-08-2010
Volume - 1   Issue - 2    |    Publication Date - July 2010  Table of Contents
Fluidized bed, Artificial neural network, Self-organizing map, Multilayer perceptron, Clustering
The reduction of harmful emissions is affecting increasingly the modern-day production of energy, while higher objectives are set also for the efficiency of combustion processes. Therefore it is necessary to develop such data analysis and modeling methods that can respond to these demands. This paper presents an overview of how the formation of nitrogen oxides (NOx) in a circulating fluidized bed (CFB) boiler was modeled by using a sub-model -based artificial neural network (ANN) approach. In this approach, the process data is processed first by using a self-organizing map (SOM) and k-means clustering to generate subsets representing the separate process states in the boiler. These primary process states represent the higher level process conditions in the combustion, and can include for example start-ups, shutdowns, and idle times in addition to the normal process flow. However, the primary states of process may contain secondary states that represent more subtle phenomena in the process, which are more difficult to observe. The data from secondary combustion conditions can involve information on e.g. instabilities in the process. In this study, the aims were to identify these secondary process states and to show that in some cases the simulation accuracy can be improved by creating secondary sub-models. The results show that the approach presented can be a fruitful way to get new information from combustion processes.
CITED BY (1)  
1 Liukkonen, M. (2010). Intelligent Methods in the Electronics Industry. University of Eastern Finland.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
7 PdfSR 
1 J.A. Harding, M. Shahbaz, Srinivas, A. Kusiak. ”Data Mining in Manufacturing: A Review”. Journal of Manufacturing Science and Engineering, 128(4):969-976, 2006
2 S. Haykin, S. “Neural Networks: A Comprehensive Foundation”, Prentice Hall, Upper Saddle River, NJ (1999)
3 M.R.M Meireles, P.E.M Almeida, M.G. Simões. “A Comprehensive Review for Industrial Applicability of Artificial Neural Networks”. IEEE Trans. Industrial Electronics, 50(3):585-601, 2003
4 I.M. Mujtaba, M.A. Hussain (eds.). ”Application of Neural Network and Other Learning Technologies in Process Engineering”, Imperial College Press, London, UK (2001)
5 M. Heikkinen, T. Hiltunen, M. Liukkonen, A. Kettunen, R. Kuivalainen, Y. Hiltunen. ”A Modelling and Optimization System for Fluidized Bed Power Plants”. Expert Systems with Applications, 36(7):10274-10279, 2009
6 M. Heikkinen, T. Heikkinen, Y. Hiltunen. ”Process States and Their Submodels Using Self-Organizing Maps in an Activated Sludge Treatment Plant”. In Proc. 48th Scandinavian Conference on Simulation and Modeling (SIMS 2008) [CD-ROM]. Oslo University College, 2008
7 M. Heikkinen, V. Nurminen, T. Hiltunen, Y. Hiltunen. ”A Modeling and Optimization Tool for the Expandable Polystyrene Batch Process”. Chemical Product and Process Modeling, 3(1), Article 3, 2008
8 M. Heikkinen, A. Kettunen, E. Niemitalo, R. Kuivalainen, Y. Hiltunen. ”SOM-based method for process state monitoring and optimization in fluidized bed energy plant”. In W. Duch, J. Kacprzyk, E. Oja, S. Zadro?ny (eds.), Lecture Notes in Computer Science 3696, pp. 409-414. Springer-Verlag Berlin Heidelberg (2005)
9 M. Liukkonen, M. Heikkinen, E. Hälikkä, R. Kuivalainen, Y. Hiltunen. ”Emission Analysis of a Fluidized Bed Boiler by Using Self-Organizing Maps”. In M. Kolehmainen, P. Toivanen, B. Beliczynski (eds.), Lecture Notes in Computer Science 5495, pp. 119-129. Springer-Verlag Berlin Heidelberg (2009).
10 M. Liukkonen, T. Hiltunen, E. Havia, H. Leinonen, Y. Hiltunen. ”Modeling of Soldering Quality by Using Artificial Neural Networks”. IEEE Trans. Electronics Packaging Manufacturing, 32(2):89-96, 2009
11 M. Liukkonen, E. Havia, H. Leinonen, Y. Hiltunen. ”Application of Self-Organizing Maps in Analysis of Wave Soldering Process”. Expert Systems with Applications, 36(3P1):4604-4609, 2009
12 T. Kohonen. “Self-Organizing Maps”, 3rd ed., Springer-Verlag, Berlin Heidelberg New York (2001)
13 R.D. Reed, R.J. Marks II. “Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks”, MIT Press, Cambridge, Massachusetts (1999)
14 M. Kasslin, J. Kangas, O. Simula. ”Process State Monitoring Using Self-Organizing Maps”. In I. Aleksander, J. Taylor (eds.), Artificial Neural Networks 2, Vol. I, pp. 1532-1534. North-Holland, Amsterdam, Netherlands (1992)
15 E. Alhoniemi, J. Hollmén, O. Simula, J. Vesanto. ”Process Monitoring and Modeling Using the Self-Organizing Map”. Integrated Computer Aided Engineering, 6(1):3-14, 1999
16 M. Liukkonen, M. Heikkinen, T. Hiltunen, E. Hälikkä, R. Kuivalainen, Y. Hiltunen. ”Modeling of Process States by Using Artificial Neural Networks in a Fluidized Bed Energy Plant”. In I. Troch, F. Breitenecker (eds.), Proc. MATHMOD 09 VIENNA, Full Papers Volume [CD-ROM]. ARGESIM – Publishing House, Vienna (2009)
17 J. MacQueen. “Some methods for classification and analysis of multivariate observations”. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I: Statistics, pp. 281-297. University of California Press, Berkeley and Los Angeles (1967)
18 D.L. Davies, D.W. Bouldin. “A Cluster Separation Measure”. IEEE Trans. Pattern Recognition and Machine Intelligence, 1(2):224-227, 1979
19 J. Freeman, D. Skapura. “Neural Networks Algorithms, Application, and Programming Techniques”, Addison-Wesley Publishing Company, Menlo Park, California (1991)
20 R. Hecht-Nielsen. “Neurocomputing”, Addison-Wesley Publishing, San Diego, California (1990)
21 P.J. Werbos. “The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting”, John Wiley & Sons, New York (1994)
22 C.J. Willmott. “On the validation of models”. Physical Geography, 2:184-194, 1981
23 P. Basu. “Combustion of coal in circulating fluidized-bed boilers: a review”. Chemical Engineering Science, 54(22):5547-5557, 1999
24 B. Leckner, A. Lyngfelt. “Optimization of Emissions from Fluidized Bed Combustion of Coal, Biofuel and Waste”. International Journal of Energy Research 26(13):1191-1202, 2002
25 K. Svoboda, M. Poho?elý. ”Influence of operating conditions and coal properties on NOx and N2O emissions in pressurized fluidized bed combustion of subbituminous coals”. Fuel 83(7-8):1095-1103, 2004
26 A. Tourunen, J. Saastamoinen, H. Nevalainen. ”Experimental Trends of NO in Circulating Fluidized Bed Combustion”. Fuel 88(7):1333-1341, 2009
Mr. Mika Liukkonen
- Finland
Mr. Eero Hälikkä
- Finland
Mr. Reijo Kuivalainen
- Finland
Professor Yrjö Hiltunen
- Finland