Home   >   CSC-OpenAccess Library   >    Manuscript Information
A Learning Linguistic Teaching Control for a Multi-Area Electric Power System
Ahmad N. Al-Husban
Pages - 278 - 285     |    Revised - 15-09-2012     |    Published - 24-10-2012
Volume - 6   Issue - 5    |    Publication Date - October 2012  Table of Contents
MORE INFORMATION
KEYWORDS
Fuzzy Logic Control, Artificial Neural Network, Interconnected PowerSystem, Load Frequency Control.
ABSTRACT
This paper presents a new methodology for designing a neuro-fuzzy control for complex physical systems. By developing a Neural -Fuzzy system learning with linguistic teaching signals. The advantage of this technique is that, produce a simple and well-performing system because it selects the fuzzy sets and the numerical numbers and process both numerical and linguistic information. This approach is able to process and learn numerical information as well as linguistic information. The proposed control scheme is applied to a multi-area power system with hydraulic and thermal turbines.
CITED BY (1)  
1 Al-Husban, A. N. (2013). A Numerical Pairs Implementation using Fuzzy Basis Function. European Journal of Scientific Research, 94(2), 172-176.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
A. Morinec, and F. Villaseca, “Continuous-Mode Automatic Generation Control of a ThreeArea Power System,” The 33rd North American Control Symposium, pp. 63–70, 2001.
C. Lin, and C.S. G. Lee ,Neural Fuzzy Systems – A Neuro Fuzzy Synergism to Intelligent Systems, New Jersey: Prentice-Hall Inc., 1996, pp. 237-253.
C.C. Lee” Fuzzy Logic in Control Systems-Part-II” IEEE Trans. On Systems, Man and Cybernetics, Vol.20, No.2, March/April, pp. 14-19, 1990.
C.C. Lee” Fuzzy Logic in Control Systems-Part-I” IEEE Trans. On Systems, Man and Cybernetics, Vol.20, No.2, pp. 12-18, March/April 1990.
G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. “A hybrid reinforcement learning approach to autonomic resource allocation” Proc. IEEE Int’l Conf. on Autonomic Computing (ICAC), 2006, pp. 522-534.
I. H. Altas, “A Fuzzy Logic Controlled Static Phase Shifter for Bus Voltage Regulation of Interconnected Power Systems”, ICEM’98 - International Conference on Electrical Machines,Istanbul, 1998, pp. 66-71.
L.A.Zadah ”Fuzzy Logic = Computing with Words” IEEE Trans. On Fuzzy Systems Vol.4,No.2, , pp. 181-190. May 1996.
M.H.Saleh, I.H.Khalifa. A.H. El--Assal “Fuzzy Logic Controller for Multi-Area Load Frequency Control of Electric Power Systems” Proc. Of ICCTA’96, Alex, 1996. pp.10-17.
P. Lama and X. Zhou "Autonomic Provisioning with Self-Adaptive Neural Fuzzy Control for End-to-end Delay Guarantee" IEEE- ACM conference, 2010, pp. 151-160.
R. Mamlook a,*, B. A. Akash b, M. S. Mohsen c "A neuro-fuzzy program approach for evaluating electric power generation systems" journal of Energy, Vol. 26, pp. 619-632,2001.
R. Mamlook, S. Nijmeh, B. Akash. "Evaluation of solar systems using fuzzy sets programming” Proceedings of the International Conference on Energy Systems, Amman,Jordan, 2000, pp. 11-18.
R. Mamlook,*, B. A. Akash b, M. S. Mohsen c "A neuro-fuzzy program approach for evaluating electric power generation systems" journal of Energy, Vol. 26, pp. 619-632,2001.
R.R. Yager and D.P.Filev ,Essentials of Fuzzy Modeling and Control, New York: john Wiley & sons Inc., 1994, pp. 291-312.
S. Omatu, M.Khalid and R. Yusof ,Neuro-Control and It Applications, New York: SpringerVerlag Berlin Heidelberg, 1996, pp. 233-235.
T.J. Ross, Fuzzy Logic with Engineering Application, New York: Mc-Graw-Hill Inc., 1995,pp. 555-570.
T.Terno, K.Asai and Sugeno, Fuzzy Systems Theory and Its Applications, London:Academic Press Inc. , 1991, pp. 132-141.
Associate Professor Ahmad N. Al-Husban
- Jordan
drahusban2008@yahoo.com