Call for Papers - Ongoing round of submission, notification and publication.
    
  
Home    |    Login or Register    |    Contact CSC
By Title/Keywords/Abstract   By Author
Browse CSC-OpenAccess Library.
  • HOME
  • LIST OF JOURNALS
  • AUTHORS
  • EDITORS & REVIEWERS
  • LIBRARIANS & BOOK SELLERS
  • PARTNERSHIP & COLLABORATION
Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available
(no registration required)

(505.85KB)


-- CSC-OpenAccess Policy
-- Creative Commons Attribution NonCommercial 4.0 International License
>> COMPLETE LIST OF JOURNALS

EXPLORE PUBLICATIONS BY COUNTRIES

EUROPE
MIDDLE EAST
ASIA
AFRICA
.............................
United States of America
United Kingdom
Canada
Australia
Italy
France
Brazil
Germany
Malaysia
Turkey
China
Taiwan
Japan
Saudi Arabia
Jordan
Egypt
United Arab Emirates
India
Nigeria
Detecting Diagonal Activity to Quantify Harmonic Structure Preservation With Cochlear Implant Mappings
Sherif A. Omran
Pages - 100 - 112     |    Revised - 31-01-2011     |    Published - 08-02-2011
Published in International Journal of Intelligent Systems and Applications in Robotics (IJRA)
Volume - 1   Issue - 5    |    Publication Date - January / February 2011  Table of Contents
MORE INFORMATION
References   |   Cited By (1)   |   Abstracting & Indexing
KEYWORDS
Robotics, Diagonal Detecting, Lines Detecting, Cochlear Implant, Matrix, Harmonic Structure
ABSTRACT
Matrix multiplication is widely utilized in signal and image processing. In numerous cases, it may be considered faster than conventional algorithms. Images and sounds may be presented in a multi-dimensional matrix form. An application under study is detecting diagonal activities in matrices to quantifying the amount of harmonic structure preservation of musical tones using different algorithms may be employed in cochlear implant devices. In this paper, a new matrix is proposed that is when post multiplied with another matrix; the first row of the output represents indices of fully active detected diagonals in its upper triangle. A preprocessing matrix manipulation was be mandatory. The results show that Omran matrix is powerful in this application and illustrated higher performance of one of the utilized algorithms with respect to others.
CITED BY (1)  
1 Gupta, A., Vig, L., & Noelle, D. C. (2011). A cognitive model for generalization during sequential learning. Journal of Robotics, 2011.
ABSTRACTING & INDEXING
1 Google Scholar 
2 CiteSeerX 
3 Scribd 
4 SlideShare 
5 PdfSR 
REFERENCES
A. Neubauer. “Irreguläre Abtastung: Signaltheorie und Signalverarbeitung (Irregular sampling: signal theory and signal processing)”, Springer Inc, Berlin (2003)
A.S. Bregman. “Auditory Scene Analysis: The Perceptual Organization of sound”, The MIT Press, Cambridge, Massachusetts (1990)
B. Riemann. “Musik Lexikon (Music lexicon)”, Direct media Publishing GmbH, Berlin (2000)
E. Terhardt. “Akustische Kommunikation (acoustic communication)”, Springer-Verlag, Berlin (1998)
F. Blume. “Die Musik in Geschichte und Gegenwart (Music in history and present)”, Finscher Ludwig (1961)
F. Gantmacher. “The Theory of Matrices”, American Mathematical Society, Rhode Island (1990)
G. Houle. “Meter in Music, Performance, Perception, and Notation”, Indiana University Press, pp. 1600-1800 ( 1987)
H. Walser. “Der Goldene Schnitt (The Golden Schnitt)”. Teubner, Stuttgart (1993)
H.L.F. Helmholtz. “On the Sensations of Tone as a Physiological Basis for the Theory of Music”, New York Dover (1954)
J. Hofman-Jablan. “Antisymmetry and colored symmetry of musical work”. Culture & Science, 6(2): 249-251,1995
J. Laneau, M. Moonen, J. Wouters. “Factors affecting the use of noise-band vocoders as acoustic models for pitch perception in cochlear implants”. J Acoust Soc Am, 119(1):491-506, 200
J. Pierce. “The science of musical sound”, Scientific American Books, New York (1983)
K. Kasturi, P. Loizou. “Effect of filter spacing on melody recognition: acoustic and electric hearing”. J Acoust Soc Am, 122(2):29-34, 2007
K. Wyatt, C. Schroeder. “Harmony and Theory: a comprehensive source for all musicians”, Musicians Institute Press (1998)
M. Neukom. “Signale, Systeme und Klangsynthesse: Grundlagen der Computermusik (Singals, Systems and Sound synthesis: basics of computer music”, Peter Lang Inc, Bern (2005)
P.A. Busby, K.L. Plant. “Dual electrode stimulation using the nucleus CI24RE cochlear implant: electrode impedance and pitch ranking studies”. Ear Hear, 26(5): 504-515, 2005
P.L. Divenyi, I.J. Hirsh. “Identification of temporal order in three-tone sequences”. J Acoust Soc Am, 56(1): 144-191, 1974
R. Scruton. “The Aesthetics of Music”, Clarendon Press, Oxford (1997)
S. Handel. “Timbre perception and auditory object formation”, Academic Press, San Diego (CA). pp. 425-461 (1995)
S. Omran, W.K. Lai, N. Dillier. “Pitch ranking, Melody contour and instrument recognition tests using two semitone frequency maps for Nucleus Cochlear Implants”. Audio speech and music processing journal, 2010
S. Omran, W.K. Lai, N. Dillier. “Semitone Frequency Maps to Improve Music representation for Nucleus Cochlear Implants”. Audio speech and music processing journal, submitted, 2011
S. Sadie, G. Grove. “The New Grove Dictionary of Music and Musicians”, Grove, London (1995)
MANUSCRIPT AUTHORS
Mr. Sherif A. Omran
Omran - Switzerland
sherif.omran@gmx.de


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS
 
You can contact us anytime since we have 24 x 7 support.
Join Us|List of Journals|
    
Copyrights © 2025 Computer Science Journals (CSC Journals). All rights reserved. Privacy Policy | Terms of Conditions