Home   >   CSC-OpenAccess Library   >    Manuscript Information
Design of FPGA-based Sliding Mode Controller for Robot Manipulator
Farzin Piltan, N. Sulaiman, M. H. Marhaban, Adel Nowzary, Mostafa Tohidian
Pages - 173 - 194     |    Revised - 01-07-2011     |    Published - 05-08-2011
Volume - 2   Issue - 3    |    Publication Date - July / August 2011  Table of Contents
MORE INFORMATION
KEYWORDS
Robot Manipulator, Sliding Mode Controller, Chattering Phenomenon, FPGA, VHDL Language
ABSTRACT
One of the most active research areas in the field of robotics is robot manipulators control, because these systems are multi-input multi-output (MIMO), nonlinear, and uncertainty. At present, robot manipulators is used in unknown and unstructured situation and caused to provide complicated systems, consequently strong mathematical tools are used in new control methodologies to design nonlinear robust controller with satisfactory performance (e.g., minimum error, good trajectory, disturbance rejection). Robotic systems controlling is vital due to the wide range of application. Obviously stability and robustness are the most minimum requirements in control systems; even though the proof of stability and robustness is more important especially in the case of nonlinear systems. One of the best nonlinear robust controllers which can be used in uncertainty nonlinear systems is sliding mode controller (SMC). Chattering phenomenon is the most important challenge in this controller. Most of nonlinear controllers need real time mobility operation; one of the most important devices which can be used to solve this challenge is Field Programmable Gate Array (FPGA). FPGA can be used to design a controller in a single chip Integrated Circuit (IC). In this research the SMC is designed using VHDL language for implementation on FPGA device (XA3S1600E-Spartan-3E), with minimum chattering and high processing speed (63.29 MHz).
CITED BY (85)  
1 Daikh, F. Z., & Khelfi, M. F. A. (2015). Sliding mode with neuro–fuzzy network controller for inverted pendulum. International Journal of Automation and Control, 9(1), 24-36.
2 Piltan, F., Rahmani, M., Esmaeili, M., Tayebi, M. A., Cheraghi, M. P. H., Rashidian, M. R., & Khajeh, A. (2015). Research on FPGA-Based Controller for Nonlinear System. International Journal of U-& E-Service, Science & Technology, 8(3).
3 Li, J., Post, M., & Lee, R. (2015, March). FPGA hardware nonlinear control design for modular CubeSat attitude control system. In Aerospace Conference, 2015 IEEE (pp. 1-15). IEEE.
4 Podivinsky, J., Cekan, O., Simkova, M., & Kotasek, Z. (2015). The evaluation platform for testing fault-tolerance methodologies in electro-mechanical applications. Microprocessors and Microsystems.
5 Ohkawa, T., Uetake, D., Yokota, T., Ootsu, K., & Baba, T. (2014). Reconfigurable and hardwired ORB engine on FPGA by Java-to-HDL synthesizer for realtime application. ACM SIGARCH Computer Architecture News, 41(5), 77-82.
6 Piltan, F., Bazregar, M., Piran, M., & Akbari, M. (2014). Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine. IAES International Journal of Artificial Intelligence (IJ-AI), 3(1), 36-48.
7 Mirzaie, M., Piltan, F., Sulaiman, N., Haghighi, S. T., Ghatasheh, N., Elmardi, O. M., ... & Maryam, K. (2014). Design New Rule-based Effect Fuzzy Controller. International Journal of Advanced Science and Technology, 72, 1-18.
8 Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Management of Automotive Engine Based on Stable Fuzzy Technique with Parallel Sliding Mode Optimization. International Journal of Advances in Applied Sciences, 2(4), 171-184.
9 Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(9), 103.
10 Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111.
11 Ohkawa, T., Uetake, D., Yokota, T., & Ootsu, K. (2013, December). Component-Based FPGA Circuit Design and Verification for Robotic Systems Using JavaRock and ORB Engine-A Case Study. In Applied Mechanics and Materials (Vol. 433, pp. 1849-1852).
12 Nekooei, M. J., Jaswar, J., & Priyanto, A. (2013, November). Designing Fuzzy Backstepping Adaptive Based Fuzzy Estimator Variable Structure Control: Applied to Internal Combustion Engine. In Applied Mechanics and Materials (Vol. 376, pp. 383-389).
13 Piltan, F., Bairami, M. A., Aghayari, F., & Rashidian, M. R. (2013). Stable Fuzzy PD Control with Parallel Sliding Mode Compensation with Application to Rigid Manipulator. International Journal of Information Technology and Computer Science (IJITCS), 5(7), 103.
14 Piltan, F., Zare, S., ShahryarZadeh, F., & Mansoorzadeh, M. (2013). Supervised Optimization of Fuel Ratio in IC Engine Based on Design Baseline Computed Fuel Methodology. International Journal of Information Technology and Computer Science (IJITCS), 5(4), 76.
15 Piltan, F., Jafari, M., Eram, M., Mahmoudi, O., & Sadrnia, O. R. (2013). Design Artificial Intelligence-Based Switching PD plus Gravity for Highly Nonlinear Second Order System. International Journal of Engineering and Manufacturing (IJEM), 3(1), 38.
16 Moosavi, M., Eram, M., Khajeh, A., Mahmoudi, O., & Piltan, F. (2013). Design New Artificial Intelligence Base Modified PID Hybrid Controller for Highly Nonlinear System. International Journal of Advanced Science and Technology, 57.
17 Piltan, F., Hosainpour, A., Emamzadeh, S., Nazari, I., & Mirzaie, M. (2013). Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. IAES International Journal of Robotics and Automation (IJRA), 2(4), 149-162.
18 Jalali, A., Piltan, F., Hashemzadeh, M., BibakVaravi, F., & Hashemzadeh, H. (2013). Design Parallel Linear PD Compensation by Fuzzy Sliding Compensator for Continuum Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(12), 97.
19 Piltan, F., Emamzadeh, S., Heidari, S., Zahmatkesh, S., & Heidari, K. (2013). Design Artificial Intelligent Parallel Feedback Linearization of PID Control with Application to Continuum Robot. International Journal of Engineering and Manufacturing, 3(2), 51-72.
20 Jahed, A., Piltan, F., Rezaie, H., & Boroomand, B. (2013). Design Computed Torque Controller with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator. International Journal of Information Engineering & Electronic Business, 5(3).
21 Piltan, F., Mansoorzadeh, M., Zare, S., Shahryarzadeh, F., & Akbari, M. (2013). Artificial tune of fuel ratio: Design a novel siso fuzzy backstepping adaptive variable structure control. International Journal of Electrical and Computer Engineering (IJECE), 3(2), 171-185.
22 Piltan, F., Bazregar, M., Akbari, M., & Piran, M. (2013). Adjust the fuel ratio by high impact chattering free sliding methodology with application to automotive engine. International Journal of Hybrid Information Technology, 6(1), 13-24.
23 Piltan, F., Eram, M., Taghavi, M., Sadrnia, O. R., & Jafari, M. (2013). Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(12), 135.
24 Haghighi, S. T., Soltani, S., Piltan, F., & Zare, S. (2013). Evaluation Performance of IC Engine: linear tunable gain computed torque controller Vs. Sliding mode controller. International Journal of Intelligent Systems and Applications (IJISA), 5(6), 78.
25 Salehi, A., Piltan, F., Mousavi, M., Khajeh, A., & Rashidian, M. R. (2013). Intelligent Robust Feed-forward Fuzzy Feedback Linearization Estimation of PID Control with Application to Continuum Robot. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 1.
26 Jalali, A., Piltan, F., Keshtgar, M., & Jalali, M. (2013). Colonial Competitive Optimization Sliding Mode Controller with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(7), 50.
27 Piltan, F., Sulaiman, N., Gavahian, A., & Marhaban, M. H. Sliding Mode Controller for robot manipulator using FPGA.
28 Piltan, F., Nabaee, A., Ebrahimi, M., & Bazregar, M. (2013). Design robust fuzzy sliding mode control technique for robot manipulator systems with modeling uncertainties. International Journal of Information Technology and Computer Science (IJITCS), 5(8), 123.
29 Jalali, A., Piltan, F., Gavahian, A., & Jalali, M. (2013). Model-free adaptive fuzzy sliding mode controller optimized by particle swarm for robot manipulator. International Journal of Information Engineering and Electronic Business (IJIEEB), 5(1), 68.
30 Piltan, F., Yarmahmoudi, M., Mirzaie, M., Emamzadeh, S., & Hivand, Z. (2013). Design Novel Fuzzy Robust Feedback Linearization Control with Application to Robot Manipulator. International Journal of Intelligent Systems and Applications (IJISA), 5(5), 1.
31 Piltan, F., Piran, M., Bazregar, M., & Akbari, M. (2013). Design High Impact Fuzzy Baseline Variable Structure Methodology to Artificial Adjust Fuel Ratio. International Journal of Intelligent Systems and Applications (IJISA), 5(2), 59.
32 Piltan, F., Badri, A., Meigolinedjad, J., & Keshavarz, M. (2013). Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator. International Journal of Intelligent Systems and Applications, 5(9), 103.
33 Shamsodini, M., Manei, R., Bekter, A., Ranjbar, B., & Soltani, S. (2013). Design a New Fuzzy Optimize Robust Sliding Surface Gain in Nonlinear Controller. International Journal of Intelligent Systems and Applications, 5(12), 91.
34 Piltan, F., Mehrara, S., Meigolinedjad, J., & Bayat, R. (2013). Design Serial Fuzzy Variable Structure Compensator for Linear PD Controller: Applied to Rigid Robot. International Journal of Information Technology and Computer Science (IJITCS), 5(11), 111.
35 Piltan, F., & Haghighi, S. T. Evolutionary Design Auto Tune Sliding Surface Slope Adjust of Artificial Backstepping Applied to Artificial Estimator Sliding Mode Based Position Algorithm.
36 Piltan, F., & Haghighi, S. T. Design Adaptive MIMO Fuzzy Sliding Mode Algorithm Based on Inverse Dynamic Model: Applied to Second Order Nonlinear System.
37 Seven Tir Ave, S. Design Robust Backstepping on-line Tuning Feedback Linearization Control Applied to IC Engine.
38 Li, J., Post, M., & Lee, R. FPGA Hardware Nonlinear Control Design for Modular Nanosatellite Attitude Control System.
39 TAHIR, D. N. International journal of artificial intelligence and expert systems (IJAE).
40 Seven Tir Ave, S. Effect of Rule Base on the Fuzzy-Based Tuning Fuzzy Sliding Mode Controller: Applied to 2 nd Order Nonlinear System.
41 Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
42 Piltan, F., Piran, M., Akbari, M., & Barzegar, M. (2012). Baseline Tuning Methodology Supervisory Sliding Mode Methodology: Applied to IC Engine. International Journal of Advances in Applied Sciences, 1(3), 116-124.
43 Piltan, F., Mehrara, S., Bayat, R., & Rahmdel, S. (2012). Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
44 Piltan, F., & Haghighi, S. T. (2012). Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots. IAES International Journal of Robotics and Automation (IJRA), 1(4), 175-189.
45 Piltan, F., Bayat, R., Mehara, S., & Meigolinedjad, J. (2012). GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace. International Journal of Information Engineering and Electronic Business (IJIEEB), 4(5), 17.
46 Piltan, F., Bayat, R., Aghayari, F., & Boroomand, B. (2012). Design Error-Based Linear Model-Free Evaluation Performance Computed Torque Controller. International Journal of Robotics and Automation, 3(3), 151-166.
47 Piltan, F., Emamzadeh, S., Hivand, Z., Shahriyari, F., & Mirazaei, M. (2012). PUMA-560 Robot Manipulator Position Sliding Mode Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate/Undergraduate Nonlinear Control, Robotics and MATLAB Courses. International Journal of Robotics and Automation, 3(3), 106-150.
48 Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., & Hosainpour, A. (2012). PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses. International Journal of Robotics and Automation, (3), 167-191.
49 Piltan, F., Akbari, M., Piran, M., & Bazregar, M. (2012). Design Model Free Switching Gain Scheduling Baseline Controller with Application to Automotive Engine. International Journal of Information Technology and Computer Science (IJITCS), 5(1), 65.
50 Piltan, F., Jahed, A., Rezaie, H., & Boroomand, B. (2012). Methodology of Robust Linear On-line High Speed Tuning for Stable Sliding Mode Controller: Applied to Nonlinear System. International Journal of Control and Automation, 5(3), 217-236.
51 Piltan, F., Aghayari, F., Rashidian, M. R., & Shamsodini, M. (2012). A New Estimate Sliding Mode Fuzzy Controller for Robotic Manipulator. International Journal of Robotics and Automation, 3(1), 45-58.
52 Piltan, F., Meigolinedjad, J., Mehrara, S., & Rahmdel, S. (2012). Evaluation Performance of 2nd Order Nonlinear System: Baseline Control Tunable Gain Sliding Mode Methodology. International Journal of Robotics and Automation, 3(3), 192-211.
53 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Performance-Based Adaptive Gradient Descent Optimal Coefficient Fuzzy Sliding Mode Methodology. International Journal of Intelligent Systems and Applications (IJISA), 4(11), 40.
54 Piltan, F., Mirzaei, M., Shahriari, F., Nazari, I., & Emamzadeh, S. (2012). Design Baseline Computed Torque Controller. International Journal of Engineering, 6(3), 129-141.
55 Piltan, F., Keshavarz, M., Badri, A., & Zargari, A. (2012). Design Novel Nonlinear Controller Applied to RobotManipulator: Design New Feedback Linearization Fuzzy Controller with Minimum Rule Base Tuning Method. International Journal of Robotics and Automation, 3(1), 1-12.
56 Piltan, F., Dialame, M., Zare, A., & Badri, A. (2012). Design Novel Lookup Table Changed Auto Tuning FSMC: Applied to Robot Manipulator. International Journal of Engineering, 6(1), 25-41.
57 Piltan, F., Boroomand, B., Jahed, A., & Rezaie, H. (2012). Methodology of Mathematical Error-Based Tuning Sliding Mode Controller. International Journal of Engineering, 6(2), 96-117.
58 Piltan, F., Nazari, I., Siamak, S., & Ferdosali, P. (2012). Methodology of FPGA-based mathematical error-based tuning sliding mode controller. International Journal of Control and Automation, 5(1), 89-118.
59 Piltan, F., Siamak, S., Bairami, M. A., & Nazari, I. (2012). Gradient descent optimal chattering free sliding mode fuzzy control design: LYAPUNOV approach. International Journal of Advanced Science and Technology, 43, 73-90.
60 Kada, B. (2012, March). A New Methodology to Design Sliding-PID Controllers: Application to Missile Flight Control System. In International Federation of Automatic Control IFAC Conference on Advances in PID Control, Brescia,(Italy) (Vol. 2, No. 1, pp. 673-678).
61 Piltan, F., Piran, M., Akbari, M., & Barzegar, M. (2012). Baseline tuning methodology supervisory sliding mode methodology: Applied to IC engine. International Journal of Advances in Applied Sciences, 1(3), 116-124.
62 Piltan, F., Sulaiman, N., Gavahian, A., & Marhaban, M. H. Sliding Mode Controller for robot manipulator using FPGA.
63 Seven Tir Ave, S. Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
64 Piltan, F., Sulaiman, N., Ferdosali, P., & Talooki, I. A. (2011). Design Model-free Fuzzy Sliding Mode Control of Internal Combustion Engine.
65 Seven Tir Ave, S. (2011). Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
66 Piltan, F., Bairami, M. A., Aghayari, F., & Allahdadi, S. (2011). Design adaptive artificial inverse dynamic controller: Design sliding mode fuzzy adaptive new inverse dynamic fuzzy controller. International Journal of Robotics and Automation (IJRA), 3(1), 13.
67 Piltan, F., Allahdadi, S., Mohammad, A. B., & Nasiri, H. (2011). Design Auto Adjust Sliding Surface Slope: Applied to Robot Manipulator. International Journal of Robotics and Automation, 3(1), 27-44.
68 Piltan, F., Sulaiman, N., Zare, A., Allahdadi, S., & Dialame, M. (2011). Design adaptive fuzzy inference sliding mode algorithm: applied to robot arm. International Journal of Robotics and Automation, 2(5), 283-297.
69 Piltan, F., Sulaiman, N., Rashidi, M., Tajpaikar, Z., & Ferdosali, P. (2011). Design and Implementation of Sliding Mode Algorithm: Applied to Robot Manipulator-A Review. International Journal of Robotics and Automation, 2(5), 265-282.
70 Piltan, F., Sulaiman, N. A. S. I. R. I., & AsadiTalooki, I. (2011). Evolutionary Design on-line Sliding Fuzzy Gain Scheduling Sliding Mode Algorithm: Applied to Internal Combustion Engine. International Journal of Engineering Science and Technology, 3(10), 7301-7308.
71 Piltan, F., Sulaiman, N., Roosta, S., Gavahian, A., & Soltani, S. (2011). Artificial Chattering Free on-line Fuzzy Sliding Mode Algorithm for Uncertain System: Applied in Robot Manipulator. International Journal of Engineering, 5(5), 360-379.
72 Piltan, F., Sulaiman, N., Gavahian, A., Roosta, S., & Soltani, S. (2011). On line Tuning Premise and Consequence FIS: Design Fuzzy Adaptive Fuzzy Sliding Mode Controller Based on Lyaponuv Theory. International Journal of Robotics and Automation, 2(5), 381-400.
73 Piltan, F., Sulaiman, N., Roosta, S., Gavahian, A., & Soltani, S. (2011). Evolutionary Design of Backstepping Artificial Sliding Mode Based Position Algorithm: Applied to Robot Manipulator. International Journal of Engineering, 5(5), 419-434.
74 Piltan, F., Sulaiman, N., Jalali, A., & Aslansefat, K. (2011). Evolutionary Design of Mathematical tunable FPGA Based MIMO Fuzzy Estimator Sliding Mode Based Lyapunov Algorithm: Applied to Robot Manipulator. International Journal of Robotics and Automation, 2(5), 317-343.
75 Piltan, F., Sulaiman, N., Ferdosali, P., Rashidi, M., & Tajpeikar, Z. (2011). Adaptive MIMO Fuzzy Compensate Fuzzy Sliding Mode Algorithm: Applied to Second Order Nonlinear System. International Journal of Engineering, 5(5), 380-398.
76 Piltan, F., Sulaiman, N., Allahdadi, S., Dialame, M., & Zare, A. (2011). Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control. International Journal of Artificial intelligence and Expert System, 2(5), 208-228.
77 Piltan, F., Sulaiman, N., Jalali, A., & Narouei, F. D. (2011). Design of Model Free Adaptive Fuzzy Computed Torque Controller: Applied to Nonlinear Second Order System. International Journal of Robotics and Automation, 2(4), 232-244.
78 Piltan, F., Sulaiman, N., Ferdosali, P., & Talooki, I. A. (2011). Design Model Free Fuzzy Sliding Mode Control: Applied to Internal Combustion Engine. International Journal of Engineering, 5(4), 302-312.
79 Piltan, F., Sulaiman, N., Nasiri, H., Allahdadi, S., & Bairami, M. A. (2011). Novel Robot Manipulator Adaptive Artificial Control: Design a Novel SISO Adaptive Fuzzy Sliding Algorithm Inverse Dynamic Like Method. International Journal of Engineering, 5(5), 399-418.
80 Piltan, F., Jalali, A., Sulaiman, N., Gavahian, A., & Siamak, S. (2011). Novel Artificial Control of Nonlinear Uncertain System: Design a Novel Modified PSO SISO Lyapunov Based Fuzzy Sliding Mode Algorithm. International Journal of Robotics and Automation, 2(5), 298-316.
81 Piltan, F., Sulaiman, N., Talooki, I. A., & Ferdosali, P. (2011). Control of IC Engine: Design a Novel MIMO Fuzzy Backstepping Adaptive Based Fuzzy Estimator Variable Structure Control. International Journal of Robotics and Automation, 2(5), 360-380.
82 Piltan, F., Sulaiman, N., Zargari, A., Keshavarz, M., & Badri, A. (2011). Design PID-Like Fuzzy Controller With Minimum Rule Base and Mathematical Proposed On-line Tunable Gain: Applied to Robot Manipulator. International Journal of Artificial intelligence and expert system, 2(4), 184-195.
83 Piltan, F., Haghighi, S. T., Sulaiman, N., Nazari, I., & Siamak, S. (2011). Artificial Control of PUMA Robot Manipulator: A-Review of Fuzzy Inference Engine And Application to Classical Controller. International Journal of Robotics and Automation, 2(5), 401-425.
84 Seven Tir Ave, S. Artificial Robust Control of Robot Arm: Design a Novel SISO Backstepping Adaptive Lyapunov Based Variable Structure Control.
85 Seven Tir Ave, S. Design New Control Methodology of Industrial Robot Manipulator: Sliding Mode Baseline Methodology.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
B. Siciliano and O. Khatib, Springer handbook of robotics: Springer-Verlag New York Inc,2008.
F. J. Lin, et al., "FPGA-based adaptive backstepping sliding-mode control for linear induction motor drive," Power Electronics, IEEE Transactions on, vol. 22, pp. 1222-1231, 2007.
F. J. Lin, et al., "FPGA-based fuzzy sliding-mode control for a linear induction motor drive," 2005, pp. 1137-1148.
K. D. Rogers, "ACCELERATION AND IMPLEMENTION OF A DSP PHASE-BASED FREQUENCY ESTIMATION ALGORITHM: MATLAB/SIMULINK TO FPGA VIA XILINX SYSTEM GENERATOR," Citeseer, 2004.
N. Sulaiman, et al., "Design and Implementation of FPGA-Based Systems-A Review,"Australian Journal of Basic and Applied Sciences, vol. 3, pp. 3575-3596, 2009.
O. Kaynak, "Guest editorial special section on computationally intelligent methodologies and sliding-mode control," IEEE Transactions on Industrial Electronics,vol. 48, pp. 2-3, 2001.
R. R. Ramos, et al., "A fixed-frequency quasi-sliding control algorithm: application to power inverters design by means of FPGA implementation," Power Electronics, IEEE Transactions on, vol. 18, pp. 344-355, 2003.
S. Lentijo, et al., "FPGA based sliding mode control for high frequency power converters," 2004, pp. 3588-3592.
S. T. Karris, Digital circuit analysis and design with Simulink modeling and introduction to CPLDs and FPGAs: Orchard Pubns, 2007.
T. R. Kurfess, Robotics and automation handbook: CRC, 2005.
U. D. Meshram and R. Harkare, "FPGA Based Five Axis Robot Arm Controller."
U. Meshram, et al., "Robot arm controller using FPGA," 2009, pp. 8-11.
X. Shao and D. Sun, "Development of an FPGA-based motion control ASIC for robotic manipulators," 2006, pp. 8221-8225.
X. Shao, et al., "A new motion control hardware architecture with FPGA-based IC design for robotic manipulators," 2006, pp. 3520-3525.
Y. S. Kung and G. S. Shu, "Development of a FPGA-based motion control IC for robot arm," 2006, pp. 1397-1402.
Y. S. Kung, et al., "Design and Implementation of a Servo System for Robotic Manipulator," ed: CACS, 2005.
Y. S. Kung, et al., "FPGA-implementation of inverse kinematics and servo controller for robot manipulator," Proc. IEEE Int. on Robotics and Biomimetics, pp. 1163–1168,2006.
Z. A. Obaid, et al., "Developed Method of FPGA-based Fuzzy Logic Controller Design with the Aid of Conventional PID Algorithm," Australian Journal of Basic and Applied Sciences, vol. 3, pp. 2724-2740, 2009.
Mr. Farzin Piltan
SSP Co. - Malaysia
SSP.ROBOTIC@yahoo.com
Dr. N. Sulaiman
UPM - Malaysia
Mr. M. H. Marhaban
- Malaysia
Dr. Adel Nowzary
- Iran
Mr. Mostafa Tohidian
- Iran


CREATE AUTHOR ACCOUNT
 
LAUNCH YOUR SPECIAL ISSUE
View all special issues >>
 
PUBLICATION VIDEOS