Home > CSC-OpenAccess Library > Manuscript Information
EXPLORE PUBLICATIONS BY COUNTRIES |
![]() |
| EUROPE | |
| MIDDLE EAST | |
| ASIA | |
| AFRICA | |
| ............................. | |
| United States of America | |
| United Kingdom | |
| Canada | |
| Australia | |
| Italy | |
| France | |
| Brazil | |
| Germany | |
| Malaysia | |
| Turkey | |
| China | |
| Taiwan | |
| Japan | |
| Saudi Arabia | |
| Jordan | |
| Egypt | |
| United Arab Emirates | |
| India | |
| Nigeria | |
Extended Density-aware Cross-scale Transformer for Multimodal Atmospheric Degradation in Robust Object Classification
Fiston Oshasha Oshasha, Francklin Mwamba Kande, Saint Jean Djungu, Muka Kabeya Arsene, Jacques IloloIpan, Ruben Mfunyi Kabongo
Pages - 210 - 233 | Revised - 15-12-2025 | Published - 31-12-2025
MORE INFORMATION
KEYWORDS
Computer Vision, Atmospheric Degradation, Transformer Architecture, Multi-modal
Learning, Robust Classification, Weather Conditions, Density-aware Networks.
ABSTRACT
Real world computer vision systems face significant performance degradation under adverse
conditions. Building on our previous EDCST framework for fog-degraded imagery, this work
introduces EDCST-MM (Multi-Modal), an extended architecture capable of handling 16
atmospheric and visual degradation conditions simultaneously. Unlike traditional vision systems
that require condition-specific models, EDCST-MM leverages unified density-aware encoding,
cross-scale feature fusion, and adaptive transformer blocks to achieve robust classification
across fog, rain, darkness, blur, and noise scenarios.
This work addresses the fundamental research question: Can a unified deep learning architecture handle diverse atmospheric and visual degradations without requiring condition-specific models or pre-processing restoration pipelines, while maintaining both robustness and computational efficiency for real-world deployment?
Evaluated on the CODaN dataset, the model reaches an average accuracy of 92.78%, representing an 18.6% improvement over the best baseline (DeiT-S: 74.2%). The framework demonstrates exceptional robustness on atmospheric degradations (fog: 98.24%, rain: 97.73%, darkness: 97.64%) and strong performance under visual degradations (blur: 95.22%, structured noise: 85.90%). Accuracy remains above 95% on 13 of 16 conditions, though Gaussian noise remains challenging (47.80%).
These results validate the effectiveness of our multi-condition density encoding and conditionaware attention mechanisms while maintaining computational efficiency (21.3M parameters, 12ms GPU inference). EDCST-MM thus establishes a clear advance over existing approaches and represents a practical step toward deploying robust vision systems in real-world multidegraded environments.
This work addresses the fundamental research question: Can a unified deep learning architecture handle diverse atmospheric and visual degradations without requiring condition-specific models or pre-processing restoration pipelines, while maintaining both robustness and computational efficiency for real-world deployment?
Evaluated on the CODaN dataset, the model reaches an average accuracy of 92.78%, representing an 18.6% improvement over the best baseline (DeiT-S: 74.2%). The framework demonstrates exceptional robustness on atmospheric degradations (fog: 98.24%, rain: 97.73%, darkness: 97.64%) and strong performance under visual degradations (blur: 95.22%, structured noise: 85.90%). Accuracy remains above 95% on 13 of 16 conditions, though Gaussian noise remains challenging (47.80%).
These results validate the effectiveness of our multi-condition density encoding and conditionaware attention mechanisms while maintaining computational efficiency (21.3M parameters, 12ms GPU inference). EDCST-MM thus establishes a clear advance over existing approaches and represents a practical step toward deploying robust vision systems in real-world multidegraded environments.
| Ancuti, C. O., Ancuti, C., Timofte, R., & De Vleeschouwer, C. (2018). O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 754-762). https://doi.org/10.1109/CVPRW.2018.00119 | |
| Ancuti, C. O., Ancuti, C., Timofte, R., & De Vleeschouwer, C. (2020). NH-HAZE: An image dehazing benchmark with non-homogeneous hazy and haze-free images. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 444-445). https://doi.org/10.1109/CVPRW50498.2020.00230 | |
| Anwar, S., & Barnes, N. (2020). Densely residual Laplacian super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(3), 1192-1204. https://doi.org/10.1109/TPAMI.2020.3021732 | |
| Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization (arXiv:1907.02893). arXiv. https://arxiv.org/abs/1907.02893 | |
| Atrey, P. K., Hossain, M. A., El Saddik, A., &Kankanhalli, M. S. (2010). Multimodal fusion for multimedia analysis: A survey. Multimedia Systems, 16(6), 345-379. https://doi.org/10.1007/s00530-010-0182-0 | |
| Bai, Y., Mei, J., Yuille, A. L., & Xie, C. (2021). Are transformers more robust than CNNs? In Advances in Neural Information Processing Systems 34 (pp. 26831-26843). Curran Associates, Inc. | |
| Baltrusaitis, T., Ahuja, C., & Morency, L. P. (2019). Multimodal machine learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423-443. https://doi.org/10.1109/TPAMI.2018.2798607 | |
| Berman, D., Treibitz, T., & Avidan, S. (2016). Non-local image dehazing. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1674-1682). https://doi.org/10.1109/CVPR.2016.185 | |
| Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., & Veit, A. (2021). Understanding robustness of transformers for image classification. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (pp. 10231-10241). https://doi.org/10.1109/ICCV48922.2021.01007 | |
| Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W., Dietmayer, K., & Heide, F. (2020). Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11682-11692). https://doi.org/10.1109/CVPR42600.2020.01170 | |
| Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., & Wang, M. (2022). Swin-Unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the 2022 European Conference on Computer Vision Workshops (pp. 205-218). Springer. https://doi.org/10.1007/978-3-031-25066-8_9 | |
| Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., &Zagoruyko, S. (2020). End-to-end object detection with transformers. In Proceedings of the 2020 European Conference on Computer Vision (pp. 213-229). Springer. https://doi.org/10.1007/978-3-030-58452-8_13 | |
| Chen, C., Chen, Q., Xu, J., & Koltun, V. (2018). Learning to see in the dark. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3291-3300). https://doi.org/10.1109/CVPR.2018.00347 | |
| Chen, L., Chu, X., Zhang, X., & Sun, J. (2022). Simple baselines for image restoration. In Proceedings of the 2022 European Conference on Computer Vision (pp. 17-33). Springer. https://doi.org/10.1007/978-3-031-20071-7_2 | |
| Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019). AutoAugment: Learning augmentation strategies from data. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 113-123). https://doi.org/10.1109/CVPR.2019.00020 | |
| Dai, D., Sakaridis, C., Hecker, S., & Van Gool, L. (2020). Curriculum model adaptation with synthetic and real data for semantic foggy scene understanding. International Journal of Computer Vision, 128(5), 1182-1204. https://doi.org/10.1007/s11263-019-01182-4 | |
| Dai, Z., Liu, H., Le, Q. V., & Tan, M. (2021). CoAtNet: Marrying convolution and attention for all data sizes. In Advances in Neural Information Processing Systems 34 (pp. 3965-3977). Curran Associates, Inc. | |
| Dodge, S., & Karam, L. (2017). A study and comparison of human and deep learning recognition performance under visual distortions. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (pp. 1-7). https://doi.org/10.1109/ICCCN.2017.8038465 | |
| Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D., & Guo, B. (2022). CSWin transformer: A general vision transformer backbone with cross-shaped windows. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12124-12134). https://doi.org/10.1109/CVPR52688.2022.01181 | |
| Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., &Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In Proceedings of the 9th International Conference on Learning Representations. https://openreview.net/forum?id=YicbFdNTTy | |
| Fattal, R. (2014). Dehazing using color-lines. ACM Transactions on Graphics, 34(1), Article 13. https://doi.org/10.1145/2651362 | |
| Geirhos, R., Jacobsen, J. H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., & Wichmann, F. A. (2020). Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11), 665-673. https://doi.org/10.1038/s42256-020-00257-z | |
| Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., & Wichmann, F. A. (2018). Generalisation in humans and deep neural networks. In Advances in Neural Information Processing Systems 31 (pp. 7549-7561). Curran Associates, Inc. | |
| He, K., Sun, J., & Tang, X. (2011). Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341-2353. https://doi.org/10.1109/TPAMI.2010.168 | |
| He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778). https://doi.org/10.1109/CVPR.2016.90 | |
| Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. In Proceedings of the 7th International Conference on Learning Representations. https://openreview.net/forum?id=HJz6tiCqYm | |
| Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019). Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (pp. 1314-1324). https://doi.org/10.1109/ICCV.2019.00140 | |
| Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula, S., Zoran, D., Brock, A., Shelhamer, E., Hénaff, O., Botvinick, M. M., Zisserman, A., Vinyals, O., & Carreira, J. (2022). Perceiver IO: A general architecture for structured inputs & outputs. In Proceedings of the 10th International Conference on Learning Representations. https://openreview.net/forum?id=fILj7WpI-g | |
| Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., & Carreira, J. (2021). Perceiver: General perception with iterative attention. In Proceedings of the 38th International Conference on Machine Learning (pp. 4651-4664). PMLR. https://proceedings.mlr.press/v139/jaegle21a.html | |
| Kamann, C., & Rother, C. (2020). Benchmarking the robustness of semantic segmentation models with respect to common corruptions. International Journal of Computer Vision, 129(2), 462-483. https://doi.org/10.1007/s11263-020-01383-2 | |
| Kar, A., Prakash, A., Liu, M.-Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D., Torralba, A., & Fidler, S. (2019). Meta-Sim: Learning to generate synthetic datasets. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (pp. 4551-4560). https://doi.org/10.1109/ICCV.2019.00465 | |
| Kar, O. F., Yeo, T., Atanov, A., & Zamir, A. (2022). 3D common corruptions and data augmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 18631-18641). https://doi.org/10.1109/CVPR52688.2022.01808 | |
| Katharopoulos, A., Vyas, A., Pappas, N., & Fleuret, F. (2020). Transformers are RNNs: Fast autoregressive transformers with linear attention. In Proceedings of the 37th International Conference on Machine Learning (pp. 5156-5165). PMLR. https://proceedings.mlr.press/v119/katharopoulos20a.html | |
| Kenk, M. A., &Hassaballah, M. (2020). DAWN: Vehicle detection in adverse weather nature dataset (arXiv:2008.05402). arXiv. https://arxiv.org/abs/2008.05402 | |
| Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips, R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W., Earnshaw, B., Haque, I., Beery, S. M., Leskovec, J., Kundaje, A., ... Liang, P. (2021). WILDS: A benchmark of in-the-wild distribution shifts. In Proceedings of the 38th International Conference on Machine Learning (pp. 5637-5664). PMLR. https://proceedings.mlr.press/v139/koh21a.html | |
| Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (pp. 8878-8887). https://doi.org/10.1109/ICCV.2019.00897 | |
| Li, B., Peng, X., Wang, Z., Xu, J., & Feng, D. (2017). AOD-Net: All-in-one dehazing network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (pp. 4770-4778). https://doi.org/10.1109/ICCV.2017.511 | |
| Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., & Wang, Z. (2019). Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, 28(1), 492-505. https://doi.org/10.1109/TIP.2018.2867951 | |
| Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., & Hoi, S. C. H. (2021). Align before fuse: Vision and language representation learning with momentum distillation. In Advances in Neural Information Processing Systems 34 (pp. 9694-9705). Curran Associates, Inc. | |
| Li, R., Pan, J., Li, Z., & Tang, J. (2020). Single image deblurring via implicit motion estimation. IEEE Transactions on Image Processing, 29, 6452-6463. https://doi.org/10.1109/TIP.2020.2994399 | |
| Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., & Timofte, R. (2021). SwinIR: Image restoration using Swin transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (pp. 1833-1844). https://doi.org/10.1109/ICCVW54120.2021.00210 | |
| Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., &Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In Proceedings of the 2014 European Conference on Computer Vision (pp. 740-755). Springer. https://doi.org/10.1007/978-3-319-10602-1_48 | |
| Liu, X., Ma, Y., Shi, Z., & Chen, J. (2019). GridDehazeNet: Attention-based multi-scale network for image dehazing. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (pp. 7314-7323). https://doi.org/10.1109/ICCV.2019.00741 | |
| Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L., Wei, F., & Guo, B. (2022). Swin transformer V2: Scaling up capacity and resolution. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12009-12019). https://doi.org/10.1109/CVPR52688.2022.01170 | |
| Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (pp. 10012-10022). https://doi.org/10.1109/ICCV48922.2021.00986 | |
| Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep learning models resistant to adversarial attacks. In Proceedings of the 6th International Conference on Learning Representations. https://openreview.net/forum?id=rJzIBfZAb | |
| Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A. S., Bethge, M., & Brendel, W. (2019). Benchmarking robustness in object detection: Autonomous driving when winter is coming (arXiv:1907.07484). arXiv. https://arxiv.org/abs/1907.07484 | |
| Mintun, E., Kirillov, A., & Xie, S. (2021). On interaction between augmentations and corruptions in natural corruption robustness. In Advances in Neural Information Processing Systems 34 (pp. 3571-3583). Curran Associates, Inc | |
| Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (pp. 689-696). Omnipress. | |
| Oshasha, F., Mwamba, F., Djungu, S. J., & Mulenda, N. K. (2025). EDCST: Enhanced density-aware cross-scale transformer for robust object classification under atmospheric fog conditions. SSRN Electronic Journal. Advance online publication. https://doi.org/10.2139/ssrn.5773267 | |
| Qin, X., Wang, Z., Bai, Y., Xie, X., & Jia, H. (2020). FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (pp. 11908-11915). AAAI Press. https://doi.org/10.1609/aaai.v34i07.6865 | |
| Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (2009). Dataset shift in machine learning. MIT Press. | |
| Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., &Sutskever, I. (2021). Learning transferable visual models from natural language supervision. In Proceedings of the 38th International Conference on Machine Learning (pp. 8748-8763). PMLR. https://proceedings.mlr.press/v139/radford21a.html | |
| Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2019). Do ImageNet classifiers generalize to ImageNet? In Proceedings of the 36th International Conference on Machine Learning (pp. 5389-5400). PMLR. https://proceedings.mlr.press/v97/recht19a.html | |
| Rosenfeld, E., Ravikumar, P., & Risteski, A. (2021). The risks of invariant risk minimization. In Proceedings of the 9th International Conference on Learning Representations. https://openreview.net/forum?id=BbNIbVPJ-42 | |
| Sagawa, S., Koh, P. W., Hashimoto, T. B., & Liang, P. (2020). Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. In Proceedings of the 8th International Conference on Learning Representations. https://openreview.net/forum?id=ryxGuJrFvS | |
| Sakaridis, C., Dai, D., & Van Gool, L. (2018). Semantic foggy scene understanding with synthetic data. International Journal of Computer Vision, 126(9), 973-992. https://doi.org/10.1007/s11263-018-1072-8 | |
| Sakaridis, C., Dai, D., & Van Gool, L. (2021). ACDC: The adverse conditions dataset with correspondences for semantic driving scene understanding. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (pp. 10765-10775). https://doi.org/10.1109/ICCV48922.2021.01059 | |
| Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., & Beyer, L. (2021). How to train your ViT? Data, augmentation, and regularization in vision transformers (arXiv:2106.10270). arXiv. https://arxiv.org/abs/2106.10270 | |
| Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (pp. 6105-6114). PMLR. https://proceedings.mlr.press/v97/tan19a.html | |
| Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., & Schmidt, L. (2020). Measuring robustness to natural distribution shifts in image classification. In Advances in Neural Information Processing Systems 33 (pp. 18583-18599). Curran Associates, Inc. | |
| Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., &Jégou, H. (2021). Training data-efficient image transformers & distillation through attention. In Proceedings of the 38th International Conference on Machine Learning (pp. 10347-10357). PMLR. https://proceedings.mlr.press/v139/touvron21a.html. | |
| Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon, S., & Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the reality gap by domain randomization. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 969-977). https://doi.org/10.1109/CVPRW.2018.00143 | |
| Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2019). Robustness may be at odds with accuracy. In Proceedings of the 7th International Conference on Learning Representations. https://openreview.net/forum?id=SyxAb30cY7 | |
| Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30 (pp. 5998-6008). Curran Associates, Inc. | |
| Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., &Shao, L. (2021). Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (pp. 568-578). https://doi.org/10.1109/ICCV48922.2021.00061 | |
| Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., & Li, H. (2022). Uformer: A general U-shaped transformer for image restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 17683-17693). https://doi.org/10.1109/CVPR52688.2022.01716 | |
| Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., & Zhang, L. (2021). CvT: Introducing convolutions to vision transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (pp. 22-31). https://doi.org/10.1109/ICCV48922.2021.00009 | |
| Xie, C., Wu, Y., van der Maaten, L., Yuille, A. L., & He, K. (2019). Feature denoising for improving adversarial robustness. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 501-509). https://doi.org/10.1109/CVPR.2019.00059 | |
| Xu, Z., Liu, D., Yang, J., Raffel, C., & Niethammer, M. (2020). Robust and generalizable visual representation learning via random convolutions. In Proceedings of the 8th International Conference on Learning Representations. https://openreview.net/forum?id=BVSM0x3EDK6 | |
| Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., & Wu, W. (2021). Incorporating convolution designs into visual transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (pp. 579-588). https://doi.org/10.1109/ICCV48922.2021.00062 | |
| Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (pp. 6023-6032). https://doi.org/10.1109/ICCV.2019.00612 | |
| Zamir, S. W., Arora, A., Gupta, S., Khan, S., Sun, G., Khan, F. S., Zhu, F., Shao, L., Xia, G.-S., & Yang, M.-H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5728-5739). https://doi.org/10.1109/CVPR52688.2022.00564 | |
| Zhang, H., & Patel, V. M. (2021). Density-aware single image de-raining using a multi-stream dense network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3080-3095. https://doi.org/10.1109/TPAMI.2018.2869722 | |
| Zhang, J., Niu, Y., Zhang, J., Gu, S., Timofte, R., & Zuo, W. (2020). NTIRE 2020 challenge on perceptual extreme super-resolution: Methods and results. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 492-493). https://doi.org/10.1109/CVPRW50498.2020.00061 | |
| Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7), 3142-3155. https://doi.org/10.1109/TIP.2017.2662206 | |
| Zhao, H., Gallo, O., Frosio, I., & Kautz, J. (2017). Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging, 3(1), 47-57. https://doi.org/10.1109/TCI.2016.2644865 | |
| Zhu, Q., Mai, J., & Shao, L. (2015). A fast single image haze removal algorithm using color attenuation prior. IEEE Transactions on Image Processing, 24(11), 3522-3533. https://doi.org/10.1109/TIP.2015.2446191 | |
Dr. Fiston Oshasha Oshasha
General Commissariat for Atomic Energy, Regional Center for Nuclear Studies of Kinshasa, Kinshasa - Democratic Republic of the Con
fiston.oshasha.oshasha@cgea-rdc.org
Mr. Francklin Mwamba Kande
Health Sciences Research Institute, Kinshasa - Democratic Republic of Congo
Mr. Saint Jean Djungu
Center for Research in Applied Computing, Kinshasa - Democratic Republic of the Con
Mr. Muka Kabeya Arsene
General Commissariat for Atomic Energy, Regional Center for Nuclear Studies of Kinshasa, Kinshasa - Democratic Republic of the Con
Mr. Jacques IloloIpan
Faculty of Science and Technology, University of Kinshasa, Kinshasa - Democratic Republic of the Con
Mr. Ruben Mfunyi Kabongo
Faculty of Science and Technology, University of Kinshasa, Kinshasa - Democratic Republic of the Con
|
|
|
|
| View all special issues >> | |
|
|



