Home   >   CSC-OpenAccess Library   >    Manuscript Information
Full Text Available

This is an Open Access publication published under CSC-OpenAccess Policy.
Publications from CSC-OpenAccess Library are being accessed from over 158 countries worldwide.
An overview on Advanced Research Works on Brain-Computer Interface
Biswarup Neogi, Soumya Ghosal, Achintya Das, D.N.Tibarewala
Pages - 58 - 64     |    Revised - 01-07-2011     |    Published - 05-08-2011
Volume - 2   Issue - 2    |    Publication Date - July / August 2011  Table of Contents
Brain Computer Interface(BCI), Brain Machine Interface, Steady State Visual Evoked Potential Concept(SSVEP, Electroencephalogram(EMG), Electrocardiography(E-cog)
A brain–computer interface (BCI) is a proficient result in the research field of human- computer synergy, where direct articulation between brain and an external device occurs resulting in augmenting, assisting and repairing human cognitive. Advanced works like generating brain-computer interface switch technologies for intermittent (or asynchronous) control in natural environments or developing brain-computer interface by Fuzzy logic Systems or by implementing wavelet theory to drive its efficacies are still going on and some useful results has also been found out. The requirements to develop this brain machine interface is also growing day by day i.e. like neuropsychological rehabilitation, emotion control, etc. An overview on the control theory and some advanced works on the field of brain machine interface are shown in this paper.
CITED BY (2)  
1 Poyil, A. T., & Hema, C. R. Algorithms for Brain Mobile Phone Interfaces: A Survey.
2 Poyil, A. T., & Hema, C. R. (2012). EEG Feature Extraction in Brain-Mobile Phone Interfaces. Methodology, 2014.
1 Google Scholar 
2 CiteSeerX 
3 refSeek 
4 Scribd 
5 SlideShare 
6 PdfSR 
1 D.J McFarland,D.J Krusienski,W.A Sarnacki ,J.R Wolpaw . Emulation of computer mouse control with anoninvasive brain-computer interface. J Neu Eng , 5:101–110,2008.
2 G Schalk ,J Kubnek ,K.J Miller ,N.R Anderson ,E.C Leuthardt ,J.G Ojemann ,D. Limbrick ,D Moran,L.A Gerhardt, J.RWolpaw . Decoding two-dimensional movement trajectories using electrocorticographic signals in humans . J Neu Eng 4:264–475,2007.
3 J.R Wolpaw,N Birbaumer ,D.J McFarland ,G Pfurtscheller ,T.M Vaughan . Brain-computer interfaces for communication and control. Clin Neurophysiol , 113:767– 791,2002.
4 J.M Carmena ,M.A Lebedev ,R.E Crist ,J.E O’Doherty ,D.M Santucci ,D.F Dimitrov , P.G Patil ,C.S Henriquez ,M.A Nicolelis . Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, Public Library of Sciences (PLoS) San Francisco, USA, 1: e42,2003.
5 D.M Taylor ,S.I Tillery ,A.B Schwartz . Direct cortical control of 3d neuroprosthetic Devices.Science ; 296:1829–1832,2002.
6 A.P Georgopoulos ,J.F Kalaska ,R. Caminiti ,J.T Massey . On the relations between the direction of twodimensional arm movements and cell discharge in primate motor cortex. J Neurosci ; 2: 1527-1537,1982.
7 J.K Chapin ,K.A Moxon ,R.S Markowitz ,M.A Nicolelis . Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci ; 2:664–670,1999.
8 A.B Schwartz ,D.M Taylor ,S.I Tillery SI. Extraction algorithms for cortical control of arm prosthetics. Curr. Opin. Neurobiol ; 11:701–707,2001.
9 M.D Serruya ,N.G Hatsopoulos ,L Paninski ,M.R Fellows ,J.P Donoghue .Instant neural control of a movement signal. Nature; 416:141–142,2002.
10 L.B Rosenberg . Virtual fixtures: Perceptual tools for telerobotic manipulation. In Virtual Reality Annual International Symposium,Sep ,proc. IEEE: 76–82,1993.
11 D Kragic ,P Marayong ,M Li ,A.M Okamura ,G.D Hager . Human-Machine Collaborative Systems for Microsurgical Applications. Int J Robot. Res ; 24:731–741,2005.
12 A.P Georgopoulos ,A.B Schwartz ,R.E Kettner . Neuronal population coding of Move.Science ; 233: 1416-1419,1986.
13 A.E Brockwell ,A.L Rojas ,R.E Kass . Recursive bayesian decoding of motor cortical signals by particle filtering. J. Neurophysiol ; 91:1899–1907,2004.
14 L Paninski ,M.R Fellows ,N.G Hatsopoulos ,J.P Donoghue . Spatiotemporal tuning of motor cortical neurons forhand position and velocity. J. Neurophysiol ; 91:515–932,2004.
15 M Velliste ,S Perel ,M.C Spalding ,A.S Whitford ,A.B Schwartz .Cortical control of a prosthetic arm for selffeeding. Nature ; 453:1098–1101,2008.
16 D.M Taylor ,S.I Tillery ,A.B Schwartz . Information conveyed through braincontrol:cursor versus robot. IEEE Trans Neural Syst Rehabil Eng ; 11:195–199,2003.
17 G.M Friehs ,V.A Zerris ,C.L Ojakangas ,M.R Fellows ,J.P Donoghue . Brain machine and brain-computer interfaces.Stroke ; 35:2702–2705,2004.
18 H.K Kim ,S.J Biggs ,D.W Schloerb ,J.M Carmena ,M.A Lebedev ,M.A Nicolelis ,M.A Srinivasan MA. Continuous shared control for stabilizing reaching and grasping with brainmachine interfaces. IEEE Trans Biomed Eng ;53:1164–1173,2006.
19 M.A Lebedev ,M.A.L Nicolelis , Brain-machine interfaces: past, present, and future. Trends Neurosci ; 29,2006.
20 A.B Schwartz .Cortical neural prosthetics. Ann. Rev. Neuroscience ; 27: 487–507,2004.
21 J.P Donoghue . Bridging the brain to the world: A perspective on neural interface systems.Neuron ; 60:511–521,2008.
22 M.D Linderman ,G Santhanam ,C.T Kemere ,V Gilja ,S O’Driscoll ,B.M Yu ,A Afshar ,S.I Ryu ,K.V Shenoy ,Meng TH.Signal processing challenges for neural prostheses. IEEE Sig Proc Magazine ;25: 18–28,2008.
23 J.C Sanchez ,J.C Principe ,T Nishida ,R Bashirullah ,J.G Harris ,J Fortes .Technology and signal processing forbrain-machine interfaces: The need for beyond the state-of-the-art tools. IEEE Sig Proc Magazine ; 25: 29–40,2008.
24 S.T Clanton . Cortical prosthetic control of an Artificial arm,wrist and hand ;page1-32,sclanton@cs.cmu.edu
25 T.W Berger ,M. Baudry ,R.D Brinton ,J.S Liaw ,V.Z Marmarelis ,A.Y Park ,B.J Sheu ,A.R Tanguay . Brain- Implantable Biomimetic Electronics as the Next Era in Neural Prosthetics.Proceeding Of the IEEE ; 89.,2001.
26 G Santhanam ,K.V Shenoy . Methods for Estimating Neural Step Sequences in Neural Prosthetic Applications. Proc. 1st International IEEE EMBS Conference on Neural Engineering Capri Island, Italy,:344-347. March 20-22, 2003
27 A.R Murguialday ,V. Aggarwal ,A. Chatterjee ,Y. Cho ,R. Rasmussen ,B. O'Rourke ,S.Acharya ,N.V Thakor .Brain-Computer Interface for a Prosthetic Hand Using Local Machine Control and Haptic Feedback. Proc. IEEE 10th International Conference on Rehabilitation Robotics ,Noordwijk, Netherlands:1-5, June 12-15,2007.
28 J. DiGiovanna ,B. Mahmoudi ,J.C Sanchez .Coadaptive Brain–Machine Interface via Reinforcement Learning.IEEE Trans Biomed Eng ; 56:1-11,2009.
29 G Santhanam ,S.I Ryu ,B.M Yu ,A. Afshar ,K.V Shenoy . A high-performance brain–computer interface.Nature;442:195-198,2006.
30 Molina ,G.G Tsoneva ,T. Nijholt ,A. Philips .Emotional brain-computer interfaces. ACII 2009,3rd international conference,IEEE,Amsterdom :1-9,2009.
31 S.M Siddique ,L.H Siddiqui . EEG Based Brain Computer Interface. JSW ; 4,2009.
32 S.G Mason ,G.E Birch ,. A General Framework for Brain Computer Interface Design .IEEE publications ;11,2003.
33 P Bruner ,G Schalk . Brain Computer Interaction. LNCS,Springer ; 5638:719-723,2009.
34 G.G Molina ,D. Zhu ,S. Abtahi . Phase Detection in a Visual-evoked-potential based Brain Computer Interface.EUSIPCO-2010, Aalborg, Denmark, August 23-27, 2010.
35 M. Cheng ,X. Gao ,S. Gao ,D. Xu . Multiple colorstimulus induced steady state visual evoked potentials. Proc. 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,; 2: 1012–14, 2001.
36 T.M.S Mukesh ,V Jaganathan ,M.R Reddy . A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces. Physiol Meas; 27:61–71, 2006.
37 Y Wang ,X Gao ,B Hong ,C Jia ,S Gao . Brain-computer interfaces based on visual evoked potentials. IEEE Eng Med. Bio. Magazine; 27:64–71, 2008.
38 T Kluge ,M Hartmann . Phase coherent detection of steady-state evoked potentials:Experimental results and application to brain-computer interfaces. In Proceedings of the 3rd International IEEE EMBS Conference on Neural Engineering : 425–429,2007.
39 J.J Wilson ,R. Palaniappan . Augmenting a SSVEP BCI through single cycle analysis and phase weighting. In Proceedings of the 4th International IEEE EMBS Conference on Neural Engineering :371–374,2009.
41 J.J Vidal .Toward Direct Brain–Computer Communication. Annual Rev. Biophys Bioeng 1973 ; 2: 157–180.
42 J.R Wolpaw ,D.J McFarland ,G.W Neat . Development of an Electroencephalogram–based Brain–Computer Interface. Ann. Neurol ; 28: 250–251,1990.
43 J.R Wolpaw ,D. McFarland ,G.W Neat ,C. Forneris . An EEG–based brain–computer interface for cursor control. Electroenceph clin Neurophysiol ; 78: 252–259,1991.
44 H Cecotti ,B. Rivet . A solution to solve the dilemma of high frequencies and LCD screen for SSVEP responses. Int J Bioelectromag ; 11,2010.
45 H. Zhao ,C. Liu C,C. Li ,H. Wang . Feature extraction using wavelet entropy and band powers in brain-computer interface. ICSPS 2010,2nd International Conference, IEEE ;2:670-673,2010.
46 Gollee,H Volosyak ,I McLachlan ,A.J Hunt ,K.J Gräser . An SSVEP-Based Brain–Computer Interface for the Control of Functional Electrical Stimulation. IEEE Trans Biomed Eng ;57,1847-1855,2010.
47 I. Volosyak ,D. Valbuena ,T. Malechka ,J. Peuscher ,A. Gräser .Brain–computer interface using water-based electrodes. J Neu Eng ; 7,2010.
48 Taylor, AB Schwartz .Using virtual reality to test the feasibility of controlling an upper limb FES system directly from multiunit activity from motor cortex. Proc. 6th Annual IFESS conference, Cleveland, 132-134, 2001.
49 J. DiGiovanna et al.:Towards real-time distributed signal modeling for brain machine interfaces: presented at the Int. Conf. Comput. Sci., Beijing, China, 2007.
50 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction. Cambridge, MA:MIT Press, 1998.
Mr. Biswarup Neogi
- India
Mr. Soumya Ghosal
- India
Dr. Achintya Das
- India
Dr. D.N.Tibarewala
- India