Home   >   CSC-OpenAccess Library   >    Manuscript Information
A Novel Advanced Approach Using Morphological Image Processing Technique for Early Detection of Diabetes Retinopathy
Waheed Sanya, Gaurav Bajpai, Maryam Amour, Mahmoud Alawi, Ali Adnan
Pages - 22 - 36     |    Revised - 30-06-2021     |    Published - 01-08-2021
Volume - 15   Issue - 3    |    Publication Date - August 2021  Table of Contents
Retina Image, CLAHE, Retina Optic Disc, Mathematical Morphological Operation, Diabetic Retinopathy, Microaneurysms.
Diabetic retinopathy (DR) is a common complication of diabetes mellitus and can lead to irreversible blindness. To date, DR is the leading cause of blindness and visual impairment among working adults globally. However, this blindness can be prevented if DR is detected early. Diabetes mellitus slowly affects the retina by damaging retinal blood vessels and leading to microaneurysms. The retinal images give detailed information about the health status of the visual system. Analysis of retinal image is important for an understanding of the stages of Diabetic retinopathy. Microaneurysms observed that appear in retina images, usually, the initial visible sign of DR, if detected early and properly treated can prevent DR complications, including blindness. In this research work, an advanced image modal enhancement comprises of a Contrast Limited Adaptive Histogram Equalization (CLAHE), through morphological image, processing technique with final extraction algorithm is proposed. CLAHE is responsible for the detection, and removal of the retinal optical disk. While the microaneurysm initial indicators are detected by using morphological image processing techniques. The extensive evaluation of the proposed advanced model conducted for microaneurysm detection depicts all stages of DR with an increase in the number of data set related to noise in the image. The microaneurysms noise is associated with stage of retina diseases as well as its early possible diagnosis. Evaluation is also conducted against the proposed model to measure its performance in terms of accuracy, sensitivity as well as specificity in real-time. The results show the test image attained 99.7% accuracy for a real-time database that is better compared with anty colony-based method. A sensitivity of 81% with a specificity of 90% was achieved for the detection of microaneurysms for the e-optha database. The detection of several microaneurysms correlates with stages of DR that prove an analysis of detecting its different stages. As well as it reaches our goal of early detection of DR with high performance in accuracy.
1 Semantic Scholar 
2 refSeek 
3 BibSonomy 
4 ResearchGate 
5 Doc Player 
6 J-Gate 
7 Scribd 
8 SlideShare 
A.Aruna, C. Nandanwar, S. Kumar, W. Alhaan. “A Unified and Semantic Methodology for Early Detection of Diabetic Retinopathy using Artificial Intelligence”. (2021). Annals of the Romanian Society for Cell Biology, 5075–5080. Retrieved from https://www.annalsofrscb.ro/index.php/journal/article/view/629.
Acharya, U. R., Lim, C. M., Ng, E. Y. K., Chee, C., & Tamura, T. “Computer-based detection of diabetic retinopathy stages using digital fundus images”. Proceedings of the institution of mechanical engineers, part H: journal of engineering in medicine, 223(5), 545-553. (2009). https://doi.org/10.1243%2F09544119JEIM486.
Akram MU, Khalid S and Khana SA. “Identification and classification of microaneurysms for early detection of diabetic retinopathy”. Pattern Recogn; 46(1), 107–116. (2012). https://doi.org/10.1016/j.patcog.2012.07.002.
Almazroa, A., Burman, R., Raahemifar, K., & Lakshminarayanan,” Optic disc and optic cup segmentation methodologies for glaucoma image detection a survey”. Journal of ophthalmology. V.2015, (2015) .https://doi.org/10.1155/2015/180972.
Almotiri, J., Elleithy, K., & Elleithy, “A.Retinal vessel segmentation techniques and algorithms: a survey”. Applied Sciences, 8(2), 155, (2018). https://doi.org/10.3390/app8020155.
Bilal A, Sun G, Mazhar S. “Survey on recent developments in automatic detection of diabetic retinopathy”. J Fr Ophtalmol.;44(3):420-440, 2021 Mar doi: 10.1016/j.jfo.2020.08.009.
Chaturvedi, S. S., Gupta, K., Ninawe, V., & Prasad, P. S. “Automated diabetic retinopathy grading using deep convolutional neural network”. arXiv preprint arXiv:2004.06334. (2020).
Chetoui M, Akhloufi MA. “Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets”. J Med Imaging (Bellingham), 7(4):044503, 2020 Jul. doi: 10.1117/1.JMI.7.4.044503.
Dua, S., Kandiraju, N., & Thompson, H. W. “Design and implementation of a unique blood- vessel detection algorithm towards early diagnosis of diabetic retinopathy”. In International Conference on Information Technology: Coding and Computing (ITCC'05)-Volume II, (2005, Apr), (Vol. 1, pp. 26-31), IEEE. DOI: 10.1109/ITCC.2005.120.
Dutta, S., Manideep, B. C., Basha, S. M., Caytiles, R. D., & Iyengar, N. C. S. N. “Classification of diabetic retinopathy images by using deep learning models”. International Journal of Grid and Distributed Computing, 11(1), 89-106. (2018). DOI: 10.14257/ijgdc.2018.11.1.09.
Foeady, Ahmad Zoebad, et al. "Automated diagnosis system of diabetic retinopathy using GLCM method and SVM classifier." 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE, 2018. DOI: 10.1109/EECSI.2018.8752726
Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., ... & Klein, R.” Retinopathy in diabetes. Diabetes care”, 27(suppl 1), s84-s87. (2004). https://doi.org/10.2337/diacare.27.2007.S84.
Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., & Barman, S. A. “Blood vessel segmentation methodologies in retinal images–a survey”. Computer methods and programs in biomedicine, 108(1), 407-433, (2012). https://doi.org/10.1016/j.cmpb.2012.03.009.
G. D. Joshi, J. Sivaswamy and S. R. Krishnadas."Optic Disk and Cup Segmentation from Monocular Color Retinal Images for Glaucoma Assessment" .in IEEE Transactions on Medical Imaging, vol. 30, no. 6, pp. 1192-1205, Jun (2011).doi:10.1109/TMI.2011.2106509.
Gadekallu, T. R., Khare, N., Bhattacharya, S., Singh, S., Maddikunta, P. K. R., & Srivastava, G. “Deep neural networks to predict diabetic retinopathy”. Journal of Ambient Intelligence and Humanized Computing, 1-14. (2020). https://doi.org/10.1007/s12652-020-01963-7.
García, G., Gallardo, J., Mauricio, A., López, J., & Del Carpio, C. “Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images”. In International Conference on Artificial Neural Networks, (2017, Sep), (pp.635-642). Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_72.
Gondal, W. M., Köhler, J. M., Grzeszick, R., Fink, G. A., & Hirsch, M. Weakly.”supervised localization of diabetic retinopathy lesions in retinal fundus images”. In the 2017 IEEE international conference on image processing (ICIP), 2017 Sep, (pp.2069-2073).DOI: 10.1109/ICIP.2017.8296646.
Gonzalez, R., & Wintz 2nd, P. (1987). Digital Image Processing (2nd Edition) .Addison Wesley. Reading, Mass. (1987).
Grisan, E., Pesce, A., Giani, A., Foracchia, M., & Ruggeri, A. “A new tracking system for the robust extraction of the retinal vessel structure”. In The 26th annual international conference of the IEEE engineering in medicine and biology society, (2004, Sep), (Vol. 1, pp. 1620- 1623), IEEE.DOI: 10.1109/IEMBS.2004.1403491.
Heijmans, A. M. Morphological Image Operators., (Academic Press: New York.). (1994).
Hoover, A. D., Kouznetsova, V., & Goldbaum, M. “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response”. IEEE Transactions on Medical Imaging, 19(3), 203-210. (2000) DOI: 10.1109/42.845178.
Jelinek, H. J., Cree, M. J., Worsley, D., Luckie, A., & Nixon, P. “An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice”. Clinical and Experimental Optometry, 89(5), 299-305. (2006). https://doi.org/10.1111/j.1444-0938.2006.00071.
Kahai, P., Namuduri, K. R., & Thompson, H. “A decision support framework for automated screening of diabetic retinopathy”. International journal of biomedical imaging, (2006). https://doi.org/10.1155/IJBI/2006/45806.
Karthiyayini, R., Shenbagavadivu, N. “Retinal Image Analysis for Ocular Disease Prediction Using Rule Mining Algorithms”. Interdiscip Sci Comput Life Sci (2020). https://doi.org/10.1007/s12539-020-00373-9.
Kaur, Prabhjot, Somsirsa Chatterjee, and Dilbag Singh. "Neural network technique for diabetic retinopathy detection." Int J Eng Adv Technol (IJEAT) 8.6 (2019): 440-445. DOI: 10.35940/ijeat.E7835.088619
Kempen, J. H., O'Colmain, B. J., Leske, M. C., Haffner, S. M., Klein, R., Moss, S. E. & Hamman, R. F. “The prevalence of diabetic retinopathy among adults in the United States”. Archives of ophthalmology” (Chicago, Ill.: 1960), 122(4), 552-563, (2004).DOI: 10.1001/archopht.122.4.552.
Larsen, M., Godt, J., Larsen, N., Lund-Andersen, H., Sjølie, A. K., Agardh, E., & Owens, D. R. “Automated detection of fundus photographic red lesions in diabetic retinopathy”. Investigative ophthalmology & visual science, 44(2), 761-766. (2003). https://doi.org/10.1167/iovs.02-0418.
Lee, S. C., Lee, E. T., Kingsley, R. M., Wang, Y., Russell, D., Klein, R., & Warn, “A. Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts”. Archives of Ophthalmology, 119(4), 509-515, (2001). doi:10.1001/archopht.119.4.509.
M. S. Miri and A. Mahloojifar."Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction". in IEEE Transactions on Biomedical Engineering, vol. 58, no. 5, pp. 1183-1192, May (2011).DOI: 10.1109/TBME.2010.2097599.
M.S. Miri and A. Mahloojifar, “An approach to localize the retinal blood vessels using bit planes and centerline detection,” in Computer methods and programs in biomedicine, vol.108, pp. 600-616, (2012). https://doi.org/10.1016/j.cmpb.2011.08.009.
Memon, W. R., Lal, B., & Sahto, A. A.”Diabetic retinopathy”. The Professional Medical Journal, 24(02), 234-238. (2017).
Mostafa, Kazi, and Innchyn Her. "An edge detection method for hexagonal images." International Journal of Image Processing (IJIP) 10.4 (2016): 161-173.
P. Dhal and C. Azad, "A novel approach for blood vessel segmentation with exudate detection in diabetic retinopathy," 2020 International Conference on Artificial Intelligence and Signal Processing (AISP), 2020, pp. 1-6, doi: 10.1109/AISP48273.2020.9073012.
Quellec, G., Charrière, K., Boudi, Y., Cochener, B., & Lamard, M. “Deep image mining for diabetic retinopathyscreening”. Medical image analysis, 39, 178-193. (2017). https://doi.org/10.1016/j.media.2017.04.012.
Qummar, S., Khan, F. G., Shah, S., Khan, A., Shamshirband, S., Rehman, Z. U., & Jadoon, W. A.”Deep learning ensemble approach for diabetic retinopathy detection”. IEEE Access, 7, (2019), 150530-150539. DOI: 10.1109/ACCESS.2019.2947484.
Rahim SS, Jayne C, Palade V, et al. “Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening”. Neural Comput Appl; 27(5): 1149–1164. (2016). https://doi.org/10.1007/s00521-015-1929-5.
Reddy, G. Sri Venkateswara, et al. "Comparative Analysis of Intelligent Systems using Support Vector Machine for the Detection of Diabetic Retinopathy." Intelligent Computing and Communication Systems. Springer, Singapore, 2021. 245-257. DOI: 10.1007/978-981- 16-1295-4_26.
S. Qummar et al.” A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection". in IEEE Access, vol. 7, pp. 150530-150539, (2019). DOI: 10.1109/ACCESS.2019.2947484.
S. Roychowdhury, D. D. Koozekanani, Keshab K and Parhi, “Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Sub-Image Classification,” in Biomedical and Health Informatics, IEEE Journal, pp. 2168-2194, (2014). DOI 10.1109/JBHI.2014.2335617.
Safa Rajaa, Rafika Mohamed salah HARRABI, Slim Ben Chaabane.” Facial Expression Recognition System Based on SVM and HOG Techniques”. International Journal of Image Processing (IJIP), 15.2 (2021): 14-21.
Samanta, A., Saha, A., Satapathy, S. C., Fernandes, S. L., & Zhang, Y. D.”Automated detection of diabetic retinopathy using convolutional neural networks on a small dataset”. Pattern Recognition Letters, 135, 293-298. (2020). https://doi.org/10.1016/j.patrec.2020.04.026.
Sazzad, T. S., et al. "Establishment of an efficient color model from existing models for better gamma encoding in image processing." International Journal of Image Processing (IJIP) 7.1 (2013): 90.
Selçuk T, Alkan A. “Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy”. Med Hypotheses. 2019 Aug; 129:109242. doi: 10.1016/j.mehy.2.
Shilpa Joshi & P. T. Karule “Haemorrhages detection using geometrical techniques”, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 8:4, 436-445, (2020) DOI: 10.1080/21681163.2020.1720823.
Srinidhi, C. L., Aparna, P., & Rajan, J. “Recent advancements in retinal vessel segmentation”. Journal of medical systems, 41(4), 70. (2018). https://doi.org/10.1007/s10916-017-0719-2.
Srivastava R, Duan L, Wong DWK, et al. “Detecting retinal microaneurysms and hemorrhages with robustness to the presence of blood vessels”. Comput Methods Programs Biomed; 138: 83–91. (2016). https://doi.org/10.1016/j.cmpb.2016.10.017.
Veena Mayya, S. Sowmya Kamath, Uma Kulkarni, “Automated Microaneurysms Detection for Early Diagnosis of Diabetic Retinopathy: A Comprehensive Review”, Computer Methods, and Programs in Biomedicine, 100013,ISSN 2666-9900, Update, (2021). https://doi.org/10.1016/j.cmpbup.2021.100013.
Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., & Wang, X. “Zoom-in-net: Deep mining lesions for diabetic retinopathy detection”. In International Conference on Medical Image Computing and Computer-Assisted Intervention (2017,Sep), (pp. 267 - 275). Springer, Cham. https://doi.org/10.1007/978-3-319-66179-7_31.
Y. Hou, “Automatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection,” in Journal of Computing Science and Engineering, vol.8, pp. 119-128, (2014). https://doi.org/10.5626/JCSE.2014.8.2.119.
Yang, Y., Li, T., Li, W., Wu, H., Fan, W., & Zhang, W. “Lesion detection and grading of diabetic retinopathy via two-stage deep convolutional neural networks”. In International conference on medical image computing and computer-assisted intervention (2017, Sep) (pp. 533-540). Springer, Cham. https://doi.org/10.1007/978-3-319-66179-7_61.
Yang, Yong, Shuying Huang, and Nini Rao. "An automatic hybrid method for retinal blood vessel extraction".International Journal of Applied Mathematics & Computer Science, 18.3, (2008). DOI: 10.2478/v10006-008-0036-5.
Mr. Waheed Sanya
Department of Computer Science and Information Technology, The State University of Zanzibar, Zanzibar - Tanzania
Dr. Gaurav Bajpai
Computer Engineering and Software Engineering, University of Rwanda, Kigali - Rwanda
Dr. Maryam Amour
Department of Community Health, Muhimbili University of Health and allied sciences, Dar-es-salaam - Tanzania
Dr. Mahmoud Alawi
Karume Institute of Science and Technology (KIST), Zanzibar - Tanzania
Dr. Ali Adnan
Department of computer science and IT, The State University of Zanzibar, Zanzibar - Tanzania