Home   >   CSC-OpenAccess Library   >    Manuscript Information
Reversible Data Hiding in the Spatial and Frequency Domains
Ching-Yu Yang, Wu Chih Hu
Pages - 373 - 384     |    Revised - 20-01-2010     |    Published - 20-02-2010
Volume - 3   Issue - 6    |    Publication Date - January 2010  Table of Contents
Reversible data hiding, IWT, Min-max algorithm, Coefficient-bias approach
Combinational lossless data hiding in the spatial and frequency domains is proposed. In the spatial domain, a secret message is embedded in a host medium using the min-max algorithm to generate a stego-image. Subsequently, the stego-image is decomposed into the frequency domain via the integer wavelet transform (IWT). Then, a watermark is hidden in the low-high (LH) and high-low (HL) subbands of the IWT domain using the coefficient-bias approach. Simulations show that the perceptual quality of the image generated by the proposed method and the method¡¦s hiding capability are good. Moreover, the mixed images produced by the proposed method are robust against attacks such as JPEG2000, JPEG, brightness adjustment, and inversion.
CITED BY (10)  
1 Pandey, R., Singh, A. K., Kumar, B., & Mohan, A. (2016). Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimedia Tools and Applications, 1-17.
2 Singh, A. K. (2016). Some New Techniques of Improved Wavelet Domain Watermarking ofr Medical Images.
3 Thanikkal, J. G., Thanikkal, J. G., & Danish, M. A High Capacity Reversible Data Hiding Scheme: A Case Study.
4 Thanikkal, J. G., Danish, M., & Sarwar, S. A New Android Based Steganography Application for Smartphone’s.
5 Singh, A. K., Dave, M., & Mohan, A. (2014). Wavelet based image watermarking: Futuristic concepts in information security. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 84(3), 345-359.
6 Manjunatha Reddy, H. S. (2014). Design of image steganographic systems for covert communication.
7 Poongavanam, V., & Shamala, L. M. an enhanced difference pair mapping steganography method to improve embedding capacity.
8 Boato, G., Carli, M., Battisti, F., Azzoni, M., & Egiazarian, K. (2012). Difference expansion and prediction for high bit-rate reversible data hiding. Journal of Electronic Imaging, 21(3), 033013-1.
9 Thanuja, T. C., Nagaraju, P., Vinay, J., Bhushan, K. N., & Vasanad, N. S. (2011). Hardware implementation of a robust modulo watermarking algorithm. MES Journal of Technology and Management, 2(1), 51-56.
10 Kumari, U., Thanuja, T. C., Vinay, J., Bhushan, K. N., & Vasanad, N. S. (2010, December). Watermarking using modulo algorithms for gray images. In Signal and Image Processing (ICSIP), 2010 International Conference on (pp. 343-348). IEEE.
1 Google Scholar 
2 ScientificCommons 
3 Academic Index 
4 CiteSeerX 
5 refSeek 
6 iSEEK 
7 Socol@r  
8 ResearchGATE 
9 Bielefeld Academic Search Engine (BASE) 
10 OpenJ-Gate 
11 Scribd 
12 WorldCat 
13 SlideShare 
15 PdfSR 
A. M. Alattar. “Reversible watermark using the difference expansion of a generalized integer transform”. IEEE T. Image Processing, 13(8):1147-1156, 2004.
C. C. Lin and N. L. Hsueh. “A lossless data hiding scheme based on three-pixel block differences”. Pattern Recognition, 41:1415-1425, 2008.
C. C. Lin, W. L. Tai and C. C. Chang. “Multilevel reversible data hiding based on histogram modification of difference images”. Pattern Recognition, 41:3582-3591, 2008.
C. Saravanan and R. Ponalagusamy, “Lossless grey-scale image compression using source symbols”. International Journal of Image Processing, 3(5):246-251, 2009.
F. Y. Shih. “Digital watermarking and steganography: fundamentals and techniques”. CRC Press., FL (2008).
G. Xuan, J. Zhu, J. Chen, Y. Q. Shi, Z. Ni and W. Su, “Distortionless data hiding based on integer wavelet transform”. Electronics Letters, 38(25): 1646-1648, 2002.
H. C. Wu, N. I. Wu, C. S. Tsai and M. S. Hwang. “Image steganographic scheme based on pixel-value differencing and LSB replacement methods”. IEE Proc. Vision Image Signal Processing, 152:611-615, 2005.
H. M. Al-Otum and N. A. Samara. “Adaptive blind wavelet-based watermarking technique using tree mutual difference”. Journal of Electronic Imaging, 15(4):043011-1~12, 2006.
H. W. Tseng and C. C. Chang. “An extended difference expansion algorithm for reversible watermarking”. Image and Vision Computing, 26:1148-1153, 2009.
I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich and T. Kalker. “Digital watermarking and steganography, 2nd Ed.”. Morgan Kaufmann., MA (2008).
J. Tian. “Reversible data embedding using a difference expansion”. IEEE T. Circuits and Systems for Video Technology, 13(8):890-896, 2003.
J. Y. Hsiao, K. F. Chan and J. M. Chang. “Block-based reversible data embedding”. Signal Processing, 89:556-569, 2009.
P. Tsai, Y. C. Hu and H. L. Yeh. “Reversible image hiding scheme using predictive coding and histogram shifting”. Signal Processing, 89:1129-1143, 2009.
R. Z. Wang and Y. S. Chen. “High-payload image steganography using two-way block matching”. IEEE T. Signal Processing Letter, 13(3):161-164, 2006.
X. Zhu, A. T. S. Ho and P. Marziliano. “A new semi-fragile image watermarking with robust tampering restoration using irregular sampling”. Signal Processing: Image Communications, 22: 515-528, 2007.
Y. Govindarajan and S. Dakshinamurthi, “Quality-security uncompromised and plausible watermarking for patent infringement”. International Journal of Image Processing, 1(2):11-20, 2007.
Z. Ni, Y. Q. Shi, N. Ansary and W. Su, “Reversible data hiding,” IEEE T. Circuit and System for Video Technology, 16:354-362, 2006.
Associate Professor Ching-Yu Yang
National Penghu University - Taiwan
Mr. Wu Chih Hu
- Taiwan